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Abstract

Firms arguably price at 99-ending prices because of left-digit bias, the tendency of consumers
to perceive a $4.99 as much lower than $5.00. Using retail scanner data on thousands of products
and dozens of retailers, I provide reduced-form support for this explanation. I then structurally
estimate the magnitude of left-digit bias, and find that consumers respond to a 1-cent increase
from a 99-ending price as if it were a 15-25 cent increase. Next, I analyze how firms should
respond to left-digit biased demand. I solve and estimate a model that makes three key predic-
tions: (1) prices should bunch at 99-ending prices; (2) there should be ranges of missing prices
with low price-endings; (3) these ranges of missing prices should increase with the dollar digit.
Qualitatively, these predictions hold. Firms respond to the bias with high shares of 99s and
missing low-ending prices. Quantitatively, however, firms price as if the bias were much smaller
and demand were more elastic, so they use dominated prices. I estimate that the retailer is
forgoing 1-3 percents of potential gross profits due to this misperception.
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1 Introduction

Retail prices commonly end with 99 cents (Conlon and Rao (2016), Ginzberg (1936), Stiving and
Winer (1997))1. A leading explanation for this pricing behavior is that consumers are left-digit
biased, meaning they ignore the cents component of the price (referred to as “level effects”, e.g.
Bizer and Schindler (2005)). An alternative explanation, “image effects”, is that consumers learn
about a product’s higher quality or value from its price-ending (Stiving (2000)).

As common as 99-ending pricing is, we do not have a model of left-digit biased demand that is
supported by the data and which can be integrated in optimal pricing models. As a consequence,
it is difficult to evaluate the impact of this pricing behavior on consumers and firms. What level,
if any, of left-digit bias do consumers exhibit? In turn, how should firms respond to the bias? Is
the observed prevalence of 99-ending prices optimal, given the observed degree of left-digit bias
by consumers? If not, how sizable are the profit losses? And what are the effects on consumers
welfare?

To answer these questions, I provide a portable model, examine whether it is supported by
the data, and estimate its parameters. I integrate the structure of left-digit biased consumers of
Lacetera, Pope, and Sydnor (2012) within a setting of profit-maximizing firms to derive a set of
predictions on pricing and profits. First, I provide reduced-form evidence for left-digit bias in
consumer demand, and structurally estimate the degree of the bias on thousands of products in
scanner data. I find that consumers are biased, to the extent of treating a 1 cent increase from a
99-ending price as if it were a 15-25 cent increase. Next, I estimate retailer pricing behavior. I find
that firms pricing is aligned with the model’s main predictions, but, firms seem to underestimate the
magnitude of the bias significantly. From the firm’s perspective, I estimate that they act as if a 99-
ending price is treated by consumers as being only 1.5-3 cents lower than the round price. Finally,
I examine the effects on consumer surplus and deadweight loss and show that they are ambiguous
in sign. However, because of the discrepancies between the estimated and firm-perceived left-digit
bias, I calculate economically significant implications on firm profits.

The first step in the paper is to create a framework to understand the phenomenon. Similar
to Chetty, Looney, and Kroft (2009), DellaVigna (2009), Gabaix (2019), Lacetera et al. (2012), I
model left-digit bias as if consumers ignore a θ share of a component of the price – the lower digits
- and replace it with a focal price ending ∆. Focusing in this paper on single dollar-digit items,
this makes a price p to be perceived as p̂ = (1− θ) p + θ (bpc+ ∆) (a mix with weight θ on a the
price with ∆ cents component, and 1− θ on the exact price). For example, with a bias of θ = 0.15,
a consumer perceives the difference between $4.00 and $3.99 as being 15 cents, but between $4.01
and $4.00 as only 0.85 cent (regardless of ∆). The bias causes aggregate demand to drop when the
first digit changes, e.g. from 3.99 to 4.00, and also dampens the price sensitivity to within-dollar

1See also Aalto-Setala (2005), Anderson and Simester (2003), Anderson, Jaimovich, and Simester (2015), Ashton
(2014), Ater and Gerlitz (2017), El Sehity, Hoelzl, and Kirchler (2005), Kalyanam and Shively (1998), Levy, Lee,
Chen, Kaufmann, and Bergen (2011), Macé (2012), Schindler and Kibarian (1996), Snir, Levy, and Chen (2017),
Strulov-Shlain (2019)

2

 Electronic copy available at: https://ssrn.com/abstract=3413019 



price changes, e.g. from $4.00 to $4.01.
How should a firm respond to consumers who perceive prices this way? Optimal pricing exhibits

bunching at 99-ending prices and missing low-ending prices. As left-digit bias increases, as demand
becomes less elastic, or for larger dollar-digits, the missing prices regions increase.

Next, I turn to explore whether the bias is evident on the demand side. A vast literature
has explored the issue, with positive but imprecise results (see Macé (2012), Stiving and Winer
(1997) for reviews), perhaps due to small samples or prices measured with error. First, proper data
cleaning and big scanner data allow to give finer and cleaner corroborating evidence for the bias
; Second, unlike existing literature, I estimate the bias such that we can incorporate it into the
firms problem. To estimate demand, I use a sample of 1710 popular products in 248 stores of a
single US retailer over 3.5 years, and another sample of 12 products in AC Nielsen RMS data across
more than 60 chains and 11,000 stores, over 9 years. The key idea is that if the model is correct,
controlling for demand shifters, we should observe drops in demand crossing the dollar digits. This
holds even though firms are strategic and price-endings are endogenous, as long as there is variation
in price-endings which is not driven by demand-level shocks.

Figure 1 provides a motivating example of a demand curve for a single product. The horizontal
axis is the price and vertical axis is log-quantity sold, demeaned from various controls. Details
regarding data and estimation are described in the body of the paper. The figure shows that
demand is flatter within dollars than across all prices (solid lines versus dashed line), with drops
between dollars.

To present systematic evidence on a large sample of products, I residualize quantities purchased
from the overall price sensitivity (e.g., with constant elasticity), and other product-level controls
such as seasonality, substitution with similar products, and promotions; then, I consider the resid-
uals by price which are the unexplained component of demand. Relative to a smooth demand
curve, residuals under left-digit bias have a sawtooth pattern - increasing within each dollar digit
and dropping sharply across the dollars. The main advantage of this procedure is that it allows to
aggregate over different products (with different elasticities and price distribution).

Several empirical challenges require attention, of which I highlight two. First, the analysis
hinges on precise measurement of prices, but prices in scanner data are the division of weekly
revenue by weekly number of units. This effective weekly average price is possibly a mix of different
prices, for example if some consumers had a discount. To deal with it I exclude observations that
are clearly mixes of different prices (for example if the price is not “to the cent”). Second, to
estimate demand we need to capture price changes that are due to supply shocks. I control for
most classic endogeneity concerns, and use instrumental variables inspired by Hausman (1996),
with some advantages given by the richness of the data.

Figure 4 aggregates results from 1710 products and exhibits clear sawtooth patterns. Demand
indeed drops as the dollar digits change. The patterns are robust to the demand structure, product
selection, retailers, and are cleanest for regular prices (i.e. when a product is not “on sale”).

These drops, together with the price level and price elasticity, can then be translated to estimate
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the left-digit bias parameter. The bias parameter describes by how much the price should change
absent the bias to generate the same change in demand as from the discontinuous drop. Namely,
consider a drop of 4.5% in demand crossing from $4.99 to $5.00. With an elasticity of -1.5, a change
of 4.5% in demand can also be coming from a 3% change in price. Since 3% of $5 are 15 cents, it
implies a bias of 0.15.

I estimate the bias at the product level in 3 different methods, resulting in similar parameters
with high pairwise rank correlations (0.91, 0.7). The average bias level is 0.16-0.24 depending
on the estimation technique. I also estimate a specification with homogeneous left-digit bias and
semi-elasticity, and estimate a bias parameter of θ = 0.16 (0.01).

An important point is that whether perceived prices are rounded up or down does not affect
these estimates, and is not important for the implications I study later in the paper. Meaning, I do
not claim that total demand increases or decreases due to left-digit bias, nor do I test that claim.

In the first part of the paper I establish the bias existence, and estimate its magnitude. In
turn, it allows to ask how should and how do firms price in response. Given that I find large
discrepancies between predicted and actual pricing patterns, I ask what are the implications of
these discrepancies.

The model predicts an optimal price given parameters of left-digit bias, elasticity, and cost.
Discontinuities in demand lead to a pricing schedule by monopolistic firms that has distinct features
(also for price-competing firms, in Appendix B, or multiple-products monopolist in Appendix C).
Prices bunch at 99-ending prices, and there are well-defined regions of missing prices above the
99-ending prices (but not below). This latter prediction separates this model from the few other
models suggested in the literature.

Qualitatively, firms pricing behavior follows the predictions and comparative statics of the
model. First, retail prices commonly end with 99 (24%-34% of popular products). Second, they
rarely end with a price-ending lower than 192. A third prediction of the model is that the range
of missing prices is increasing with the dollar digits. This is also supported in the data. Low price
endings are used less and less as the dollar digit increases.

However, quantitatively, there is a strong discrepancy between what the estimated bias implies
for firms pricing patterns and what they actually do. Under the model, the estimated levels of
left-digit bias (0.25 or even 0.16) and price elasticity imply that all prices should end with 99.
Meaning, most prices set by the retailer are dominated by 99-ending prices (lower or higher). If the
firm believes the bias to be lower or demand more elastic, that can explain its pricing decisions.

Therefore, I estimate the firm’s perceived left-digit bias and elasticity that rationalize their
pricing behavior under the model. The estimation technique allows to estimate the perceived price
elasticity solely from the price distribution, even absent knowledge of quantities or costs. The
estimation technique relies on strong assumptions, and the estimates are noisy, but reasonable.
Compared to demand-side estimates, I find perceived elasticity to be more elastic and the perceived

2When they do, they are almost always on-sale prices, and likely an artifact of specific promotion strategies (such
as “2 for $6”)
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left-digit bias to be much lower at 0.023, and even 0.005. I can reject a perceived bias larger than
0.043, which is four times lower than the demand-side estimated bias. The low estimated perceived
bias is driven by the excess prevalence of low price endings.

Next, I investigate the welfare effects of the bias existence, and of the firm response to it. The
bias might improve consumers surplus, because it pushes down some prices to be 99-ending, thus
benefiting all consumers who now pay less for an item. While consumption distortion exists, it
may not be the dominating force. Overall, welfare effects are ambiguous in sign due to the bias
and to firms response to it, and their magnitude can be a few percents of consumer surplus and
deadweight loss.

Finally, given the demand side estimates, I ask what are the firm profits when it underestimates
the bias. Namely, I compare counterfactual profits from ignoring the bias or underestimating it to a
benchmark of full optimization. Compared to underestimating the bias, gross profits for optimizing
firms are higher by 1-3 percent. A conservative estimate of the effect - considering only regular
price (non-promotional) transactions - is that annual revenues for the chain are about $60m lower
due to underestimation of the bias3.

How can firms respond to the bias but at the same time underestimate it? First, this is not the
first paper to document firms making consistent deviations from profit maximization (e.g. Bloom
and Van Reenen (2007), Goldfarb and Xiao (2011)). Yet, a specific explanation for the partial
correction seems plausible. Changing a naive $2.00 to $1.99, is intuitive and brings large gains, but
a full correction, such as changing a naive $2.40 to an optimal $1.99, is counter-intuitive and less
impactful on profits (and hence also harder to pin down with noisy data). In the final section I
discuss alternative explanations, such as if consumers’ bias level responds to the pricing behavior
of the firm. I argue that these can not be ruled out, but seem unlikely.

This paper adds to the literature on 9-ending prices, on left-digit bias in general, to the literature
in behavioral industrial organization, and on retail demand estimation.

Of course, the prevalence of 9 ending prices is not new, and has been extensively explored. Some
papers draw attention to documenting the fact that many prices end with 9 (Hackl, Kummer, and
Winter-Ebmer (2014), Levy et al. (2011)) or revert to 9 following currency changes (Aalto-Setala
(2005), El Sehity et al. (2005), Strulov-Shlain (2019)), as a “revealed preference” argument for its
benefit. Experimental papers explore underlying mechanisms (e.g. Carver and Padgett (2012)4).
Fewer papers examine the effects of 9-ending prices on demand, either in field experiments (e.g.
Anderson and Simester (2003), Ashton (2014)5), or in observational data (e.g. Stiving and Winer
(1997)6). These papers find that 9-ending prices increase demand, with some mixed results. This

3The result holds under various scenarios allowing for a multi-product price setting, or for heterogeneity in left-
digit bias, perceived bias, or price elasticity. The losses are of the same magnitude whether consumers adjust prices
downward or upward.

4Bizer and Schindler (2005), Carver and Padgett (2012), Schindler and Chandrashekaran (2004), Schindler and
Kirby (1997), Schindler and Wiman (1989), Snir et al. (2017), Thomas and Morwitz (2005). A summary table is
available in Carver and Padgett (2012)

5See Anderson and Simester (2003), Ashton (2014), Bray and Harris (2006), Dalrymple and Haines Jr (1970),
Dube, Manning, and Naidu (2017), Ginzberg (1936), Schindler and Kibarian (1996).

6See Blattberg and Wisniewski (1988), Hackl et al. (2014), Jiang (2018), Kalyanam and Shively (1998), Macé
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paper adds to this literature by providing visual reduced-form evidence for the bias using big data,
and an estimation and parameterization allowing to import the bias into the firm’s problem7. This
is also the first paper that quantifies firm response to the bias.

On the formal theory side, few models relate directly to 9-ending prices (Basu (1997, 2006),
Stiving (2000)), but predictions are hard to reconcile with data. Another approach, of bounded-
rationality models, generates discrete price-setting behavior but these need not be 9-ending (Chen,
Iyer, and Pazgal (2010), Gabaix (2014), Matějka (2015)). This paper provides a portable model that
is straightforward to take to the data, connecting both the consumer and firm sides. A predecessor
smooth model of left-digit bias (DellaVigna (2009)) was estimated in various economic settings,
but not on prices (Busse, Lacetera, Pope, Silva-Risso, and Sydnor (2013), Lacetera et al. (2012)).
This difference is crucial, since prices are manipulateable8.

The paper relates to the literature in behavioral IO in two senses. First, by studying a market
where firms respond to biased consumers (See Heidhues and Kőszegi (2018) for review), and second
by studying a case where the firms are also “behavioral”, in the sense that they are not profit-
maximizing in a systematic way9. A companion paper, Strulov-Shlain (2019), exploits a natural
experiment in Israel and finds that firms do respond to left-digit bias in the long-run but in a
way that is consistent with relearning a rule-of-thumb behavior rather than understanding the
underlying model.

Finally, the paper relates to the vast literature of product demand estimation (see a review
by Nevo (2011)), by contributing a method to estimate demand solely from the price distribution.
This is a rare case in which a behavioral bias allows identification rather than make it impossible
(see review by DellaVigna (2018)).

2 Model

Most of the literature on 99 pricing is not formally modeled. It assumes that firms price at 99
because they face some non-standard consumers’ response to pricing. Main explanations are in the
form of “level effects”, where consumers drop-off the lowest digits of a price, and “image effects”
where the price carries a signal about the product, either about its quality or price (see Stiving and
Winer (1997) for a review). The model that will be described shortly is a specific formalization of
the “level effect” family, but the empirics also has something to say about image effects.

(2012), Stiving and Winer (1997). Observational data papers usually find higher demand for 99 or 9-ending prices
by including a dummy for these. Surprisingly, these papers rarely discuss the issue of price averaging that is common
across these data.

7A few papers document that prices tend to end with 9, or 99, and ask questions on the effect of this phenomenon
on price stickiness (Anderson et al. (2015), Ater and Gerlitz (2017), Levy et al. (2011)) and the pass-through of taxes
(Conlon and Rao (2016)). This paper adds to this literature by micro-founding this stickiness as an optimal pricing
response of firms.

8Indeed, two papers that examine left-digit bias in house prices, find extensive sorting of prices, but try to argue
that the price ending is chosen as-good-as random, which is clearly not the case in retail pricing (Chava and Yao
(2017), Repetto and Solis (2018)).

9See Cho and Rust (2008, 2010), DellaVigna and Gentzkow (2019), Goldfarb and Xiao (2011), Hanna, Mul-
lainathan, and Schwartzstein (2014)
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The model consists of left-digit-biased consumers and monopolistic firms10. Consumers choose a
quantity to purchase to maximize utility, but may misperceive the price. Firms price to maximize
profits, according to their beliefs of consumer misperception. I assume that misperception is a
primitive of consumer behavior, and is not affected by firm behavior. In the last section of the
paper I will discuss the plausibility and importance of this assumption.

Consider a product with a price p. Assume that a consumer has a distorted perception of the
price as p̂ = p̂ (p; θ), where the distortion increases with θ. Given this paper’s empirical context,
the p̂ function is such that consumers observe the left-most digits in full, but sometimes replace the
lower digits with a focal price ending. Specifically, θ ∈ [0, 1] is the left-digit bias parameter. I do
not take a stance of where the bias is coming from but it has intuitive behavioral interpretations
11. Specifically,

p̂ = p̂ (p; θ) = (1− θ) p+ θ (bpc+ ∆) (1)

The interpretation is that each consumer is putting a relative weight θ on a focal price-ending
∆ instead of the correct price ending, so the perceived price is a mix of the true price, and the price
with the correct left digits and the focal price ending12.

The focal price ending, ∆, is assumed to be exogenous and not a function of the price distribu-
tion. Its value is important for welfare and total profits because it determines if consumers over-
or under-consume. Yet, it can not be identified in the data. More importantly, it bears little effect
on firm’s pricing and is inconsequential for the impact of misoptimization by the firm. I highlight
when ∆ is important, so for simplicity and unless otherwise specified, assume that ∆ = 0.

If an agent has utility of the form U (y, q) = y + ( qA)1+ 1
ε

1+ 1
ε

where y is the residual income, q is
the quantity purchased of a good, and A is translating quantity to numeraire value, then overall
demand will be of the form13

D (p; θ) = Ap̂ε = A ((1− θ) p+ θ bpc)ε (2)

To gain some intuition, note that the θ left-digit bias parameter creates two effects of perceived
price changes: First, a 0.01 price increase is perceived as being roughly 0.01 + θ if the left-most
digit changes (i.e. 2.99 to 3.00); Second, a 0.01 price increase is perceived to be lower than in the
standard model, being 0.01 (1− θ), if only one digit changes (i.e. 2.95 to 2.96).

10In appendix B I solve a case of firms pricing under price-competition with left-digit biased consumers. The case
of multi-product monopolist is in appendix C.

11In other papers, θ is termed “inattention” (see Gabaix, 2019). However, other forces might lead to observationally
equivalent behavior. Such mechanisms are imperfect price recall, price categorization, or a tendency to choose round
numbers to represent internal values or reference-prices. Therefore, I use the term left-digit bias which captures all
of these, and remain agnostic about the behavioral mechanism.

12An alternative interpretation is that a θ share of consumers replace the lower digits with the focal price ending.
Though different in interpretation, these two modes lead to similar qualitative predictions (see Appendix B for when
they differ). The former interpretation is a bit simpler to solve algebraically, and also captures the observation that
“4.99 feels lower than 5.00” at the person-specific level. Further, Morrison and Taubinsky, 2019 find evidence against
the multiple types interpretation.

13Conversely, if there is type mixture as described above, then following the same formulation will lead to demand
of the form D (p; θ) = A [(1− θ) pε + θ bpcε].
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These effects then affect price setting. Consider a monopolist that faces a demand function
D (p; θ). The firm earns p per unit, and pays a fixed unit cost c but consumers perceive the price
as p̂ and choose quantities accordingly. Then, the monopolist gross profits (absent fixed costs) are

Π (p; θ) = D (p; θ) (p− c)

i.e., demand is driven by the perceived price while per unit profits are governed by the true
price. This is a common feature of models with inattention (e.g. Farhi and Gabaix (2015), Gabaix
(2019)), where there is a discrepancy between true utility and maximized utility on the consumer
side, causing distortions.

In section 5 I consider a specific form of misoptimization by the firm. The monopolist under-
stands the model and knows the true structural elasticity, but might be wrong about the level of
left-digit bias, so will maximize profits given their belief. i.e., it maximizes the wrong profit function
Π̂ = D

(
p; θ̂
)

(p− c), where θ̂ might be different than θ. For now, assume that θ̂ = θ.

Optimal pricing given θ For ease of exposition, I decompose a price p into its decimal basis
components, s.t. p = p1 + p0.1 + p0.01. For example, p = 3.49 = 3 + 0.40 + 0.09, so p1 = 3.

With left-digit bias, we get a discontinuity in demand when changing p1 since in the limit from
below, demand is A (p1 − θ)ε versus A (p1)ε. To simplify the solution, assume that prices can be
chosen from all real numbers between a natural number and a .99 ending number - ∪

q1
[q1, q] ⊂ R+

where q1 ∈ N and q = q1 + 0.9 + 0.09. Proofs to the following propositions and corollaries appear
in Appendix A.

Solving for optimal pricing yields the following

Proposition 1 (optimal pricing formula, for small θ). For any cost c and parameters ε

and θ find the appropriate .99 ending number q = (q1, .9, .09) such that c ∈
[
cq, cq+1

]
,[

q
(
1 + 1

ε

)
+ θ

1−θ
q1+∆
ε , (q + 1)

(
1 + 1

ε

)
+ θ

1−θ
q1+1+∆

ε

]
. Then, the optimal price for that cost c is

p (c; θ, ε) =

 q if c ∈
[
cq, cq

](
c− θ

1−θ ·
q1+1+∆

ε

)
ε

1+ε if c ∈
[
cq, cq+1

) (3)

Where cq and cq+1 are defined above, and cq is defined below with an implicit equation as the
minimal cost for which it is profitable to price strictly above q.

To make Equation 3 clearer I elaborate on the three threshold costs cq, cq+1, and cq. The
former two, cq and cq+1, are the costs for which the monopolist’s profit is maximized as an interior
solution at q and q + 1 respectively. i.e., where the first order condition is satisfied at q and q + 1.
The image of costs in

[
cq, cq+1

]
is hence prices in [q, q + 1] which allows to use q and q1 in the two

cases in Equation 3. The third threshold, cq, is the cost for which prices will switch between q to
a point in the segment [q1 + 1, q + 1]. At cq two conditions are met: (1) the profit is maximized
(with an internal solution) on some price Pq ∈ [q1 + 1, q + 1] > q; and (2) profits are equal at that
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price, Pq, and at q14. For ease of notation, I omit q from Pq in the following:

cq =

 P + (1−θ)P+θ(P1+∆)
ε(1−θ)

DPP−Dqq
DP−Dq

(4)

Definition 1. The Next-Lowest Price P is the lowest price used above a 99-ending price q, and is
a function of the parameters θ and ε as defined by the following implicit equation:

P + (1− θ)P + θ (P1 + ∆)
ε (1− θ) − ((1− θ)P + θ (P1 + ∆))ε P − ((1− θ)q + θ (q1 + ∆))ε q

((1− θ)P + θ (P1 + ∆))ε − ((1− θ)q + θ (q1 + ∆))ε = 0 (5)

This equation is not analytically solvable, but can be easily solved numerically. Given P , we
get cq from either part of Equation 4.

To gain some intuition regarding Equation 3 note that this pricing behavior is different from
the standard case of no-bias in two ways. First, the top case in Equation 3 shows prices ending
at 99, and second, the bottom case describes interior solutions as a modified markup rule with an
added component driven by the bias.

The top equation shows that prices are set at 99-ending prices (q) for a range of unit costs,
and hence with varying markups. This is an admittedly unsurprising, and a motivating prediction,
of non-zero mass at 99-ending prices. The mass is caused by the discontinuous drops in demand.
Thus, this model generates price stickiness that is not driven by frictions on the supplier side.

The lower expression in Equation 3, describes the interior solutions, with the lowest observed
price above q being Pq. It shows that the optimal price is a modified Lerner equation with an extra
term

(
− θ

1−θ ·
q1+1+∆

1+ε

)
. In the interior solutions region, the price is slightly higher than it would

have been absent the bias (recall that ε < −1). This is due to the left-digit bias making demand
less elastic for changes within the same first digit. This added markup is increasing in the bias (θ) ,
and the nominal price (q1), and decreasing in the absolute elasticity (ε).

The pricing schedule is illustrated in Figure 2 showing price as a function of cost with left-digit
bias. The diagonal gray line is the price without bias, and the thick lines are the optimal prices
with the bias, exhibiting regions of costs priced at 99-ending prices and ranges of missing prices
with low price endings.

Notice that in Figure 2 some products whose price is 99-ending are priced with lower markups
than absent a bias. This can be seen as a “level effect” micro-foundation of the “image effect” style
of explanations – 99-ending prices are indeed, in expectation, of higher value (insofar as costs are
positively related to value).

Most important are the testable predictions of the model: That there is bunching at 99-ending
prices, and that this bunching is asymmetric and drawn from missing prices above the round price
thresholds.

Comparative statics
14For very low θ, there is no gap, and Pq = q1 + 1.
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Proposition 2 (Comparative statics of the Next-Lowest Price). For ε < −1,
The next-lowest price is lower when demand is more elastic, i.e. ∂P

∂|ε| < 0
For q1 > 0, the next-lowest price is higher when there is more bias, i.e. ∂P

∂θ > 0.

The first part of Proposition 2 shows that more elastic demand leads to lower next-lowest price.
Higher elasticity means lower markups, so costs that go to a 99-ending price q are now higher. If
the indifference cost cq is kept fixed, and since cq = P

(
1 + 1

ε

)
+ ..., it means that P must decrease.

Of course, the cost is increasing, but the proof shows that it increases by less than offsetting this
primary effect.

The second part of Proposition 2 states that higher bias leads to higher next-lowest prices.
The effect of higher bias is simpler to understand. Consider P and increase θ. The infra-marginal
benefits from changing the price to the lower 99 are now larger (because the gap increased), while
the costs of increasing the price above P are lower because of the lower sensitivity of within-left-digit
demand. So P must increase.

A corollary is that the right-digits component of the next-lowest price is increasing from one
threshold to the next:

Corollary 1. For ε < −1, the lower digits of the Next-Lowest Price (i.e., P − P1) are increasing
with the first digits.

This corollary means that nominally expensive products have larger regions of missing prices.
For example, for the same parameters of left-digit bias and elasticity, the lowest observed price
above $4 should be $4.30 and above $5 is $5.32.

A larger region of missing prices is not necessarily tied to larger shares of 99-ending prices,
because excess mass depends on the shape of the underlying cost distribution. The share of obser-
vations in a 99-ending price q is F (cq)−F

(
cq

)
. Higher left-digit bias or less elastic demand lead to

greater cq, but both also shift the costs that go to 99, meaning also higher cq. It can be shown, even
for the simplest uniform cost distribution that the sign of effects on share of 99-prices depends on
the parameters. For example, if costs are uniformly distributed, then a change in the excess-mass
due to an infinitesimal increase in θ is proportional to ∂P

∂θ + 1
ε

(
∂P
∂θ + 1

(1−θ)2

)
. If ε → −1 then this

is negative, implying a decreasing mass at q. If ε� −1 then the first term, which is positive as per
Proposition 2, dominates, making the effect positive overall. The same kind of exercise holds also
for the comparative static effects of the price elasticity15.

In other words, unlike the next-lowest price predictions, the excess mass is sensitive to the shape
of the cost distribution and the exact values of parameters. This means that point identification of
left-digit bias and price elasticity from next-lowest prices and excess mass is theoretically possible,
in the sense that the parameters have differing effects on the moments of missing prices and excess
mass at 99-ending prices. This avenue is then explored and developed in Section 5.

15For elasticity with uniform cost distribution the first derivative of excess mass at q to changes in ε is ∂P
∂ε

(
1 + 1

ε

)
−(

P − q + θ
1−θ

)
1
ε2 .
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3 Data

This project relies on various data sources, aiming to provide a thorough investigation of the
bias. Ideal data include a large number of observations of precisely measured prices and quantities,
where prices change due to supply shocks and all demand shifters can be controlled for. For validity
purposes, we would also like the data to reflect many types of products, consumers, and retailers.
As is often the case, ideal data are hard to find. Nielsen scanner data capture a large share of
products and retailers. It is also a long panel, helping with estimation precision. However, it has
a few shortcomings mainly on the side of price measurement. Prices in the data often represent
an average of different prices paid within a week, but not a price that any consumer actually paid.
In contrast, data from a large national US grocer have several advantages in measurement and
separation between regular and on-sale prices, but represent only this retailer and their clientele.

Therefore, the main dataset I use is the retailer, allowing for cleaner empirical analysis on a
large set of products. I then use a sample from Nielsen as a validity and robustness test, and find
similar results across more than 60 different retailers.

A note on heterogeneity. In the data we observe prices across time, products and stores. So
far, we have not made any assumptions about what drives variation in prices under the model.
Indeed, price variation can be generated from differences in costs, in elasticities, or in bias levels.
As is common in the literature (e.g. Hausman (1996)) I will assume that for a specific level of
observations (e.g., same brand and chain, across stores and time) elasticity and bias are fixed, and
the price-setting variation is driven by changes in costs16. Since promotion strategies are driven by
other considerations, such as price discrimination, the assumption is probably more likely to hold
for regular prices. Further, the appeal of left-digit bias might be more relevant for regular prices,
as I will discuss below (see also Anderson and Simester, 2003).

3.1 Retailer

The first dataset is scanner data of sales of a US national grocer and its subsidiaries, with a relatively
rich set of variables. The same data were used in other papers such as Eichenbaum, Jaimovich,
and Rebelo (2011), Gopinath, Gourinchas, Hsieh, and Li (2011). Data are collected from the cash
registries of the chain’s stores and aggregated at the weekly level. Each observation is a distinct
product (UPC) in a store in a week. As shown in column (1) of Table 1, there are about 74000
distinct products, in 250 stores, and 177 weeks (2004 to mid-2007). The data describe sales of more
than 3 billion units, and $7.2 billion worth of sales.

Available variables for each observation include the number of units sold, the net revenue (the
actual amount paid) and the gross revenue (which is the amount the store would have collected if
each unit were priced at its regular price, absent discounts), among other variables (such as two

16DellaVigna and Gentzkow (2019) show that there are different elasticities between stores within a chain-product,
but that these differences are not translated to variation in prices; bias heterogeneity is also of course probable,
but it seems natural to establish the mean bias as a first step (compare the mean-bias Chetty et al. (2009) to the
heterogeneous-bias Taubinsky and Rees-Jones (2016)).
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cost measures - wholesale prices and adjusted gross profits). The price is then the division of net
revenue by units sold, and the regular price is the division of gross revenue by units sold.

An important issue with such scanner data is that if a product did not sell in a certain week,
its price is not observed (because zero units sold for zero revenue). It is likely that observations are
not missing at random. That is, if a product is less likely to sell when its price is high, then there is
a potential for underestimation of price elasticity. To mitigate this issue, I select popular products.
I select all products that were available at regular prices for at least 50% of all observations (among
weeks and stores in which they were at any point sold) and with at least 10,000 observations. To
get some level of minimal price-ending and dollar variation, I am selecting the 1710 products whose
regular prices end with 99 at most 75% of observations, or are all within a single dollar digit at
most 75% of observations, as shown in column (2) of Table 1.

As shown in column 2 of Table 1, this procedure leaves me with 1,710 products and 51.3 million
observations. Since these are of the most available and popular products, while they are 2.3% of all
possible products, they capture 19.2% of all revenue in the data. The average price is $3.42 (with
standard deviation of 1.63), and the inter-quartile range of prices is $2.29 to $4.19. Meaning, most
of the prices have exactly one dollar digit, limiting exploration of the effects of more or fewer digits
(96.35% of observations are strictly between $1 and $10).

A potential concern is the sample is selected based on outcome-related variables. Hence, I
also present results for the complementary set of popular products, namely those with highly
concentrated prices, as a robustness17. Another limitation of the data is that it is not possible
to infer the unit price for products paid by weight, such as fresh produce, meat, or deli items. I
exclude these product categories18.

In order to investigate the relationship of demand to changes within, versus across, dollar digits,
the exact price paid is crucial. However, the inferred price (net revenue divided by units sold) does
not necessarily, and often do not, describe the actual price paid in store. This happens when some
consumers have club membership specific discounts, or if some products are priced with non-linear
pricing (such as “buy 1 item get the second for 50%”). Another potential source of multiple prices,
which is when prices change during the measurement week, does not occur in this data set, since
the measurement weeks are aligned with the price changing frequency. However, in AC Nielsen
RMS data this is a sometimes severe issue as will be described next. The nature of averaged
prices in scanner data is a known issue in the literature, and some of its implications on inference
regarding economic phenomena, such as demand estimation and price changes, were explored (e.g.
Eichenbaum, Jaimovich, Rebelo, and Smith (2014), Einav, Leibtag, and Nevo (2010)). The retailer

17The other 2149 products, are characterized by having just as high availability and 10000 observations, but have
either more than 75% of observations ending with 99 (only 125 products), or more than 75% of observations starting
with the same dollar digit. This mostly happens for cheaper products, priced under $1. There are 55M observations,
representing 170M units sold annually (more than the main sample) with annual revenue of $292M (less than the
main sample). Indeed, the average price is $2.2 (versus $3.5 for the main sample), with fewer 99 and 9-ending prices
(15.4% and 63.7%).

18I exclude the following: Delicatessen, Food Service, Fresh Produce, Meat, Seafood, and Alcoholic Beverages.
This is a serious issue since weight adjustments only work for some products but not for others. For example, sliced
turkey breast, packaged in the deli and priced by weight with a sticker on the wrap will appear as a single unit.
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data have a unique advantage since there is no rounding. e.g., a price in the data, which is the
result of dividing revenue by units, might be $3.044. In such cases, when the price is not “to the
cent” then it must be the result of weighted averaging of several prices (here, for example one
possible mix can be 41 units selling for $2.99 and 9 units for $3.29). Therefore, I exclude these
observations, reducing the number of observations by about 10%, to 46 Million (column (3) of Table
1). However, this might keep other observations that are a mixture but happen to have an average
that is to-the cent. For example, 9 units purchased at $4.99 and 6 at $4.49 will give an average
price of $4.7919. A different approach is to use the length of a same-price spell. If the same price
for an item in a store appears for two consecutive weeks or more, it is less likely that this price is
non-real. Indeed, as shown in Figure 12 by the dark circles, already at two-week spells, most prices
are to-the-cent. This method is mostly useful for Nielsen data, where all prices are rounded to the
cent, so the former approach is unavailable.

Finally, a sure way to keep only non-averaged prices is to only consider the instances where the
net price equals the regular price (which happens for about two thirds of observations). Regular
prices do not change very often, and are indeed always to-the-cent. Furthermore, regular prices
likely provide the cleanest test for left-digit bias, because demand is mostly driven by the price and
not by various promotional strategies.

Some statistics about the price endings are shown in Panel B of Table 1. When I include prices
that are not to-the-cent I round the prices, emulating what happens in the Nielsen data. As we
change samples, from all observations to the “real prices”, the share of 9-ending prices increases,
meaning that other price endings are more likely to be the result of averaging of multiple prices.
Notice also the higher share of 0-ending prices for all prices (column (3)) versus only regular prices
(column (4)). Meaning, 0-ending prices are strongly positively correlated with being on-sale20.

If 9-ending prices are mostly not on-sale, while 0-ending prices (and others) are on-sale, it will
lead to spurious higher demand for 0-ending prices. High demand for 0-ending prices will show
without flexible enough controls of sales effects or if the model is misspecified. Prices are only one
determinant of demand, and different promotion techniques can lead to stronger effects than others.
Indeed, as casual observations suggest, round prices are commonly the result of quantity sales (e.g.,
“2 for $5” which means an individual unit price of $2.50) that might have stronger effects than
equally sized sales (e.g. Blattberg and Neslin (1990), Wansink, Kent, and Hoch (1998)). Appendix
Figure 11 shows how the shares of observations with to-the-cent prices (left panel) and on-sale
prices (right panel) depend on the last digit of the price. Indeed, almost all 9-ending prices likely

19Under the assumption that there are at most two prices paid, with one of the prices being the regular price, the
other price and quantity purchased at each price can be inferred in theory from the average price, the total number
of units, and the facts that prices should end with a cent. However, this is imperfect and allows for multiple prices,
and requires some assumptions to restrict possible prices to a single price. I therefore prefer to err on the safe side
by reducing sample size.

20Note that these findings stand in contrast with the assumptions of “image effects”. First, under image-effects
rationalization, round prices should be linked to high-quality items, but at the product level, they occur mostly when
the product is on-sale. Second, a common explanation for 99 prices effectiveness in this literature is that they are
learned through consumer experience to signal a discount. But, the contrary is true, as 9-ending prices, if anything,
should signal the regular, higher, prices.
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represent prices actually paid in the store (98% are to-the-cent), but only 9.9% (!) of them are
on-sale. Compare that to 0-ending prices, that are also mostly to-the-cent (92%), but 91% of them
are on-sale prices.

3.2 Nielsen

Nielsen Retail Scanner (RMS) and Consumer Panel (HMS) data are provided by the Kilts Center
at the University of Chicago. Like the retailer data, RMS records weekly UPC-store level quantity
and revenues. Overall the scanner data record observations for over 35,000 stores during 2006-2014
in the US, regarding about a million different unique products. As per this version, I am using
the Nielsen data as a robustness test using a sample of products and stores selected by DellaVigna
and Gentzkow (2019) (see for details on data selection), of 12 items (termed “high-end” in their
paper) in food stores. The summary statistics are described in Appendix Table 1. The sample
consists of 28 million observations of these 12 products, in 11000 stores, with a total of 188 million
units sold for $881 million. The data have a few disadvantages relative to the retailer data, mainly
that prices are rounded to-the-cent in the raw data, that measurement weeks are misaligned with
price changing frequency, and that promotions are not easily identified. I elaborate on these issues
with possible solutions in Appendix Section D. In a nutshell, an effective way to identify sales
and non-real prices in the data is by using the spell length of a price. If a popular product’s price
changes from week to week, it is likely to be a non-real price. If a product’s price is kept constant
for many weeks, e.g. for six consecutive weeks, it is likely a regular price. I discuss this idea further
in Appendix D.

4 Demand Estimation

In this section I provide reduced-form support for left-digit bias, and structurally estimate the bias
parameter as prescribed by the model. Finally, given estimates at the product level, I investigate
how do estimates change with respect to characteristics of the product and its clientele.

There are a few common approaches for demand estimation in the literature. Following the ap-
proach of Berry, Levinsohn, and Pakes, 1995, Nevo, 2000, 2001 estimated demand for differentiated
Consumer Packaged Goods with random coefficients. This approach has some practical limitations
(see Conlon and Gortmaker, 2019; Dubé, Fox, and Su, 2012; Knittel and Metaxoglou, 2014 for
discussions on limitations and solutions). Most notably for this paper, data restrictions that will
be elaborated next, add another layer of complexity. Further, due to their computational burden
these methods are more suitable for cases with a few items. A different approach, taken recently by
DellaVigna and Gentzkow, 2019, conducts linear regressions with non-parametric heterogeneity of
demand provided by finer cuts of the data. Because I aim at estimating demand for thousands of
items and conducting many sensitivity analyses, and because cross-elasticities are not the measure
of interest, this is the approach I will take here to estimate demand.
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4.1 Reduced-Form Evidence

Figure 3(a) illustrates constant elasticity demand curves with and without the bias, i.e. logQ =
A + ε log ((1− θ) p+ θ bpc), for θ = 0.15 on the right panels and θ = 0 on the left. On the left,
without bias, demand is a smooth curve with slope ε. On the right, the slope is flatter within each
dollar digit, and demand drops when the dollar digit changes (highlighted by different colors). The
dashed line is the fitted line from a log(quantity) on log(price) regression21. In turn, Figure 3(b)
shows the residuals by price from these regressions. The sawtooth pattern of residuals for the bias
case, with discrete drops at dollar thresholds, is a manifestation of the bias. If there is no bias, as
in the left panel of figure 3(b), residuals are a flat line at 0. If the model is misspecified, it will
exhibit some other general shape.

In the following I focus on residualized demand by exact price. The idea is to net out any
factors explaining differences in demand across observations that are not due to price-endings, such
as seasonality, store and product characteristics, promotion mix, and price elasticities. This also
allows to aggregate over more flexible demand structures, for example different elasticities and price
distributions for different products.

Figure 4 shows that the sawtooth patterns are found in the data. Residualized demand is
increasing within a dollar-digit and drops across digits. But before turning to the results, I would
like to make the empirical strategy clear.

There are four main empirical threats to overcome. The unique challenge in this paper is that
the analysis hinges on exact prices. Because prices are revenue over quantity, there is risk of prices
in the data not representing the price paid. As mentioned above I mitigate that worry by excluding
prices that are not to-the-cent and by excluding one-week spells, or at the extreme by keeping only
regular prices.

A second issue is the need to control for the promotion mix. Normally, when a retailer is putting
a product on sale demand will increase by more than the mere price effect. The retailer uses various
strategies - different tags and postage, advertisement in other parts of the store or outside of it
might be in place, and the promotion might be contingent on (or nudging for) purchasing multiple
units. As shown in figure 11, since 9-ending prices are usually regular prices and 0-ending prices
are usually on-sale, proper controls for sale effects are required. I am using multiple fixed effects
for that purpose - a dummy for whether the product is on-sale, 4 dummies for the last digit of
the price (0, 5, 9, or others), and 5 dummies for the spell length (since sales are usually shorter
price spells as shown in Figure 12) – all proxy different aspects of sale strategies, but all missing
important aspects. A more extreme solution is to conduct the analysis only on regular prices. This
has the downside of capturing a different price elasticity, and cutting down more heavily on the

21The simulated price distribution is uniform. If it were the case that prices are more likely to be 99 ending, a
regression line will be closer to the 99 ending prices. The slope of the regression line, without taking the bias into
account, is interpreted as the price elasticity. The slope is affected by the distribution of price endings, and can be
higher or lower due to the bias. For example, if prices are $4.99 and $5.05, the regression slope will be steeper, making
demand seem more elastic than it is, while if prices were $5.05 and $5.99, the slope will be flatter and demand less
elastic. I assume, as in the model, that the price elasticity is the demand response to true price changes.
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data. I take both approaches. The main analysis is conducted with all prices and sales controls,
but the results are indeed cleaner for the regular prices.

The third challenge is the sorting of price-endings. As long as price-endings are not tied to
demand shocks (e.g., when demand is high price at 99, when low price at 19), and as long as there
is enough variation in price-endings (guaranteed by sample selection) this is not a worry. The
reason is, that I am estimating the demand curve, and while prices are a function of the costs,
demand is not. From the consumer perspective, it does not matter that different costs translate to
the same price. Of course, if all prices end with 99 or all prices begin with the same dollar digit,
there is no variation and no hope for separating the price-ending effects from price effects.

Finally, since the data lack exogenous variation in prices, we worry of elasticity bias driven by
unobservables (such as local demand shocks) affecting prices and quantity sold. As just mentioned, a
simultaneity bias will alter the overall demand slope, but insofar as price-endings are not correlated
with demand shocks this will not affect the drops in demand from changing dollar digits nor will
affect the qualitative shape of the sawtooth patterns. Still, getting the same price elasticity right is
important for pinning down the level of the bias. I will estimate demand at the product level across
stores and time, with OLS and using instrumental variables. Since I conduct the estimation at the
UPC level, I argue that much of demand variation is absorbed by fixed effects, capturing seasonality,
products characteristics, permanent store differences, substitution with similar products, and sale
strategies. As Rossi (2014) argues, long panels with multiple fixed effects might not be subject to
substantial bias22. Relatedly, DellaVigna and Gentzkow (2019), Hitsch, Hortacsu, and Lin (2017)
show that chains set uniform prices across stores, hence implying that price variation is not driven
by local shocks and does not equates demand and supply at the store-week level. Meaning, the
worry should not be too big. So, even though I use instrumental variables for the main results, in
some cases I estimate a simple OLS (or a non-instrumented NLLS).

Next, I construct instrumental variables and find slightly more elastic demand, but small impact,
if any, on the patterns and estimated bias. I instrument for the price logPist with logPid(s)t, the
average log-price of the same item i in same period t in stores s in other cities but the same
distribution center d(s). The assumption here is that this average price is capturing changes in
price that are driven by cost changes. The costs are likely to be common across stores and hence
are unlikely to be driven by local demand shocks23. These instruments can not fully resolve the
issue of endogeneity, since it might be that there are aggregate demand shocks that affect prices
across stores in a certain week.

Other potential instruments are the two cost measures available in the data. Unfortunately,
22In fact, Hausman (1996) argues the following: “to the extent that supermarkets set their prices... under an

assumption of constant marginal costs (in the short run) and do not alter their prices to equilibriate supply and
demand in a given week, prices may be considered predetermined... then IV methods would not necessarily be
needed”.

23The first stage for all products is very strong, with the mean coefficient across products being 0.86 (standard
deviation of 0.14) with the smallest F-stat being 69 and most are on order of tens thousands. This strong relation
is likely driven by zone pricing behavior, and also explains why a simple OLS provides almost identical results, just
less noisy.
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they prove to be unhelpful in demand estimation. Wholesale prices rarely change, making them
weak instruments with very low F-stats of the first stage, leading to inefficient and noisy estimates.
Adjusted gross profits seem to be a result of agreements with suppliers to compensate for low
demand, rendering the instrumented elasticities to be imprecise and in the opposite sign (demand
increasing with price).

Finally, cross-elasticities with other products are an important component affecting demand24.
I am therefore including a variable of the average price of other products in the same category (as
defined by the retailer, e.g., “tea”). The common approach in the literature is to add all “close”
products flexibly (as in the lowest level of almost ideal demand systems, as in Hausman, Leonard,
and Zona (1994), or to use BLP-like random coefficients (as in Nevo (2001)), or to take a Bayesian
approach (Rossi, Allenby, and McCulloch (2012)). Since I am using thousands of products and
tens of millions of observations, and since I am excluding some observations with non-real prices,
these approaches are difficult to implement in practice. By adding a single variable of mean log
price, I essentially estimate the average cross-elasticity to products within the category (I find it
to be on the order of 0.1-0.3). I also have a robustness specification with a within category price
decile fixed effects to get non-linear effects.

I am using the following specification product-by-product:

logQist = εilogPist + αilogPc(i)st + βis + γi,year(t) + δi,month(t) + µi,on−sale(ist)+ (6)

µ′i,spell.length(ist) + νi,cents.digit(ist) + eist

Where i is product, s is store, and t is period. Q is number of units sold, and P is the price.
ε captures the product-chain elasticity as the coefficient on log-price. I instrument for logPist
with logPid(s)t, the average log-price of the product in stores in other cities that share the same
distribution center. The second term captures cross-elasticities, where logPc(i)st is the average log-
price of other products of the same product category c(i) in the same store s at the same period
t. β is a store fixed effect capturing a steady state product average demand in a store; γ is a
year fixed effect capturing long-term shifts in demand; δ is month-of-year fixed effect capturing
product specific seasonality; µ is an indicator for whether a product’s price is on-sale or not (by
comparing the actual price to the regular price, and calling it “on sale” if the actual is lower than
the regular). µ′ is a spell-length fixed effect for spells of length 2, 3, 4, 5 weeks, and more than
6 weeks, capturing on-sale propensity and some stockpiling effects; and ν is a fixed effect for the
cents digit being 9, 0, 5, or other, capturing different promotional strategies that are correlated
with specific price endings.

I then take the residuals, êist, and regress them on price fixed effects at 10 cents bins (e.g.,
24Cross elasticities are also important for pricing. To keep the model solvable analytically, and allow for comparative

statics, I ignored cross-elasticities on the theory and estimation of the firm behavior. I add it back in conducting
counterfactual exercises.
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$2.90-$2.99 is one bin).

êist =
∑

p̃={1.0,1.1,...,11.9}
αp̃1 (pist,1 + pist,0.1 = p̃) + uist

To get confidence intervals I bootstrap the two steps together 300 times, clustering by store. I do
not do this in a single step due to the large number of fixed effects (about 470,000 fixed effects plus
3,420 linear variables), making it computationally inefficient.

The main results, for 1,710 products are shown in Figure 4. The horizontal axis is the price, and
the vertical axis is the residualized demand. Each point is the estimated αp̃, the residual of demand
per price bin (10 cent bins). The top panel shows the residuals from specification 6 on the main
sample (column 3 in Table 1). The bottom panel shows results from a restricted sample of regular
prices, and the patterns are cleaner there (column 4 in Table 1). The figures show that quantity
purchased, netted of price, promotion, and seasonality effects, is increasing within each dollar-
digit and drops at dollar crossings. Such patterns are consistent with demand of left-digit biased
consumers. Meaning, after controlling for all other effects, higher price-endings are associated with
higher demand. Under the model, this is driven by ignoring a fixed proportion of the price-ending,
creating larger discounts of the total price for higher price-endings.

In the main sample, for some prices there is actually no drop crossing the dollar threshold but
for the next 10-cent prices (for example, demand only drops at $5.10 rather than at $5.00). A
simple comparison of demand at $4.99 to $5.00 would lead to the conclusion that there is opposite
bias, suggesting that perhaps round prices have some innate appeal. However, as can be seen
in the bottom panel focusing on the sample of regular prices, these patterns are driven solely by
promotions. For the restricted sample of regular prices, the round prices are aligned with the overall
sawtooth pattern and all drops are at round prices. It does mean, however, that despite my efforts,
controls for on-sale effects on demand are not fully absorbed. Or, at a fundamental level, that the
model is more suited to describe price effects absent promotions. This finding is consistent with
Anderson and Simester, 2003 who find that 9-ending prices are less effective when there is a “sale”
sign.

An alternative explanation for the sawtooth pattern is that firms price at lower-ending prices
to the extent that there is a negative demand shock, and at high-ending prices to the extent there
is a positive demand shock. Yet, since the patterns are weakened due to sale strategies, but more
consistent for regular prices (which are set for longer periods of time), this explanation seems
unlikely.

One interesting pattern is that the drop size does not decrease as the dollar digits increase.
Decrease in drops is implied if elasticity and bias are fixed across products and prices. Conversely,
fixed drops imply that the ratio of bias to elasticity is increasing. I explore this topic in Appendix
F.

The patterns also go against the image-effects explanations, where 9-ending prices have some
innate appeal. These models describe demand as a smooth function that is decreasing in price but
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exhibits discontinuous jumps of higher demand for 9- and 99-ending prices (e.g., “blip” description
in Stiving (2000) and some interpretations of findings in Anderson and Simester (2003)). However,
such behavior should have manifested itself in the data as flat residuals, with higher estimates only
for the .9x fixed effects.

Next, I conduct several robustness tests to verify that the findings are not driven by the retailer,
the demand structure, or the sample selection.

To verify that the behavior is not driven by the specific retailer, Appendix Figure 13 plots the
results of the same exercise for the Nielsen data, of 12 products from DellaVigna and Gentzkow
(2019) sold by more than 60 retailers. I run the regressions at the product-retailer level. In Nielsen
data, cleaning is based on spell-length only, and so are the on-sale proxy variables. As for the
single item and retailer, the patterns are clear but noisier for prices with fewer observations (as can
be inferred from the confidence intervals, common prices for these 12 products are at $3-$5 and
$8-$10).

In appendix figures 14, I explore the role of the demand structure. The patterns are not driven
by the constant elasticity assumption, since the figure shows that a semi-elasticity specification
produces similar sawtooth patterns. To estimate the patterns, I use the same specification and
procedure as in Equation 6, replacing log-price with actual price (also replacing average log-price
of other products with average price, and instrumenting with average price in other stores). In
Appendix Figure 15 I do the same exercise but instead regress log-price on a 5th degree polynomial
in prices at the product level, which is a very flexible, yet smooth, demand structure. In panel (b) I
control for the possible threat of the retailer choosing 99-ending prices when they want to promote
a certain product in a category. I add controls for the within-category weekly price decile. For
example, being in the cheapest 10% of dairy products is absorbed by the fixed effects. This is also
addressing the issue of substitution with similar products more flexibly.

Appendix Figure 16 provides robustness tests on a different sample, to show that these patterns
are not driven by product selection. The figure shows the residuals from instances with regular
prices for all remaining 2035 popular products (defined by at least 50% availability at regular prices
and at least 10000 observations), with at least 75% of prices ending with 99 (merely 125 products)
or at least 75% of prices starting with the same dollar digits. Meaning, popular products, but those
with more concentrated price distribution, still produce the same sawtooth patterns.

In summary, sawtooth patterns are exhibited across various specifications, products, and retail-
ers. These patterns support the existence and soundness of the model. More is needed in order to
translate these patterns to parametric left-bias estimates.

4.2 Structural Estimation of θ

I now turn to connect the reduced-form evidence with the model, and to estimate the left-digit bias
parameter θ. This is a parameter of interest for multiple reasons. First, it has a clear interpretation
in the sense of quantifying what fraction of the cents component of a price consumers ignore.
Second, structural estimation allows to describe the demand curve with a functional form, and to
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find (analytical) optimal response for the firm pricing in response to it. And finally, structural
estimation enables to conduct counterfactual exercises.

As a benchmark, I estimate a homogeneous left-digit bias parameter with a semi-elasticity
specification (details in section E.0.2). I find a precise estimate of θ = 0.1635 (0.0096) which means
that on average there is an additional 16 cent perceived difference between a 99-ending price and
the 1-cent higher round price25.

For the main analysis, similar to the reduced-form results, I estimate the left-digit bias parameter
at the product level. That is, I estimate multiple θis. I do so both for computational reasons26, and
in order to explore heterogeneity in the bias estimates. Some of the heterogeneity is coming from
sampling bias. Even with tens of thousands of observations per product, there is only a small finite
number of prices used, while for identification, multiple prices within and across dollar digits are
required. Further, the specification is a simplification of the demand structure, especially lacking
in controlling for promotion effects. Since heterogeneity in left-digit bias is strongly correlated with
underlying characteristics of the different products and their clientele, it does not seem spurious.
Learning about this heterogeneity structure informs us about the underlying mechanisms driving
the bias in the field.

4.2.1 Sufficient Statistics Approach

The bias can be inferred from the demand drops at dollar thresholds, which makes the inference
practical to firms in the future. For example, assume that demand drops by 4% when the price
crosses the $5 digit. If elasticity is -2, a 4% change in demand can also be driven by a 2% change
in price. 2% out of $5 is $0.10, so this implies a bias of 0.1, since the demand response in going
from $4.99 to $5.00 is like an additional 10 cent increase.

In general, for each triplet of demand drop ∆logQ, elasticity ε, and dollar threshold d, the bias
is27:

θ = d
(
1− e∆logQ/ε

)
≈ −d ·∆logQ/ε (7)

The first estimation approach relies on this specification, where I flexibly estimate the demand
drops for each product-dollar pair, and complement it with the elasticity from the IV specification
in Equation 6. To get the demand drops I estimate for each product a different demand slope and

25The specification is logQist = η (1− θ)Pist+ηθ bPistc+αlogPc(i)st+βis+γi,year(t) + δi,month(t) +µ′i,on.sale(ist) +
νi,cents.digit(ist) + eist. Errors are clustered at the store level. Standard errors on θ are calculated using the delta
method.

26The above single regression takes almost two weeks to run because of the about 470,000 fixed effects.
27This is an approximation of ∆logQ = ε (log ((1− θ) d+ θ (d− 1))− log (d)) = εlog

(
1− θ

d

)
≈ −ε θ

d
for θ/d� 1.
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intercept at each dollar digit

logQist =
∑

{d=dollar−digit}
(εidlogPidst + κid) +

αilogPc(i)st + βis + γi,year(t) + δi,month(t)+

µi,on−sale(ist) + µ′i,spell.length(ist) + νi,last−digit(ist) + eist

clustering standard errors by store. Then I calculate drops for each product at each dollar digit x
as

∆logQx = (ε̂x−1log(x) + κ̂x−1)− (ε̂xlog(x) + κ̂x)

where I calculate standard errors using the delta method. The identification of the drops then
is coming not from changes from $4.99 tp $5.00, but rather of the predicted demand at $5.00
extrapolated from the left (estimated on prices between $4.00 to $4.99) to the predicted demand
from the right (estimated on $5.00-$5.99). That is, the between-dimes price changes is effectively
the variation used to give these predicted levels28.

Results of these drops in demand are shown in Panel A of Table 2. I find an average drop
of 9.0% (median of 8.0%), where 86.4% of drops (keeping the most precisely estimated drop per
product, in case there is more than one) are positive, and 54.5% of drops are significantly positive at
the 5% level (compare with 2.8% significantly negative). The drops are a product-level econometric
equivalent of the residuals figure, showing that this phenomenon is occurring product by product
and not only at the aggregate29.

The drops, then, provide a reduced-form measure of the effect of a left-digit change. This is
similar to Anderson and Simester (2003) or Macé (2012), who add a dummy for any 9-ending
price. This exercise adds to that existing knowledge by doing so for many products over a large set
of stores and chains. Further, combining with elasticity estimates gives a structurally meaningful
measure – the left-digit bias is the ignored share of the last digits. This estimation approach, relying
on Equation 7, has the advantage that the vertical drops are unbiased estimates even if there is
price-ending sorting due to the bias, as long as there is no systematic sorting within product to
price-endings by demand shocks. The overall elasticity estimates are unbiased to the extent that
controls and instrumental variables solve endogeneity issues. Therefore, the left-digit bias estimates
are arguably unbiased.

A histogram of product-level left-digit bias estimates is shown in Figure 5. Row (5) in Table 2
shows that the mean parameter is 0.26, with inter-quartile range of 0.07 to 0.39. For the figure, I am
highlighting in darker shade the estimates where the estimated drops are in the top three quartiles

28This is akin to a regression discontinuity design, where I use a bandwidth of $1 on each side of the round-dollar
threshold, under the assumption that the residuals are as good as random vis-à-vis demand.

29Perhaps finding positive drops is an artifact of the data. For that reason I am running placebo tests where I am
estimating the drop size in other cutoff points (e.g., assume that at 50-ending prices, consumers round to the nearest
dollar). In that case, if taking 49 as the cutoff instead of 99, half of “drops” are positive (48.9%), which we’d expect
if this is happening at random. Indeed, round prices exhibit the most consistently positive demand drops.
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of precision. As can be seen in the figure, imprecise estimates generate most of the outliers. A
CDF of all estimates is shown as the solid dark curve in Appendix Figure 17.

In Appendix E I estimate the bias in two other methods, to make sure that the estimates are
not sensitive to the two-step procedure or the assumed demand structure. Namely, I estimate the
left-digit bias parameter in one step using non-linear least squares, and using a different structure
of constant semi-elasticity instead of constant elasticity. Estimates are very similar, as shown in
rows (6) and (7) of Table 2. A cdf of all estimates i in Appendix Figure 17.

Finally, I also estimate the model with homogeneous semi-elasticity and left-digit bias across
products (but with product level fixed effects and cross elasticities)30. Row (4) in Table 2 shows
the estimated constant left-digit bias of 0.1635 (0.096) and semi-elasticity of -0.3697 (0.0044) with
implied average elasticity of -1.29.

4.3 Exploring Bias Heterogeneity

The demand-side model makes no assumption about where the bias is coming from and what
mental process it might represent. One immediate question to ask is what is correlated with the
bias (see also Macé (2012)). The results provide field evidence of relative thinking that co-lives with
a form of deliberate inattention. Because this is not at the core of the paper, I defer the analysis
and discussion to Appendix F. In a nutshell, using the Nielsen Consumer Panel (HMS) to gain
characteristics of each product and the people who consume it, I find that the bias is increasing
with the average price of an item, decreasing with the number of units a household purchases in
a shopping trip, and is not significantly correlated with the purchasing clientele’s education or
income.

5 Firm Pricing

Building on the findings of the demand structure in Section 4, I turn to investigate the firm’s
response. I document that qualitatively, firms act as if they respond to left-digit bias. And since
they seem to respond to the bias, I conduct an “as if” exercise, estimating their perceived left-
digit bias needed to rationalize their pricing behavior. I find large gaps between the demand-side
estimated bias and the supply-side estimated perceived bias.

5.1 Qualitative Predictions

As analyzed in section 2, the model prescribes three key qualitative predictions for pricing patterns
of firms facing a demand structure such as the one estimated in section 4. The model predicts for

30Specifically, I estimate

logQist = η (1− θ)Pist + ηθ bPistc+ αiPc(i)st + βis + γi,year(t) + δi,month(t) + µ′i,on.sale(ist) + νi,cents.digit(ist) + eist
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optimizing firms: (1) excess mass at 99, (2) which is coming from a region of missing prices with
low price-endings, (3) that is increasing with the dollar digit.

The data selection process, motivated by the need to have variation in prices for the demand
side estimation is problematic. Basically, I am selecting on the products that exhibit limited 99-
pricing, so I am effectively forcing a lower bound on the mass at 99. Note that since the left-digit
bias is estimated on the same set of products, this exercise is internally consistent. But, to alleviate
concerns, I am also doing robustness tests with the entire sample of popular products without
exclusions based on price distribution.

Excess mass Figure 6 shows the price-ending histograms for the regular prices in the retailer
data and the long price spells in the Nielsen data (at least 6 weeks). The reason I restrict attention
to regular, or likely regular, prices, is that as shown above promotions techniques actually might
work to increase demand better with round prices (see also Anderson and Simester (2003)). This
is possibly because such pricing strategies, such as quantity discounts (“2 for $6”), tap on different
psychological forces such as price fluency and suggestive quantities. These forces are beyond the
model. Indeed, the model seems to fit best for the regular prices as in Figure 4(b).

High shares of prices indeed end with 99, 27% in the retailer data, and 34% in the Nielsen data.
Also, almost all prices end with 9 as the cent digit (85% and 86%)31. The latter finding also implies
that there is further bias ignoring the last digit of the price, hence leading to so many 9-endings.
This effect is probably true, but impossible to estimate, exactly because there is lack of variation
in the last digits, and hence the drops in demand at the dime thresholds can not be identified.
However, I do robustness tests assuming additional bias regarding the last digits (that is, assume
that with some measure θ2 consumers see the price as the dollar and dime digits but ignore the
cents).

Missing prices Figure 6 also shows that for both the retailer and the Nielsen data, there are few
prices ending with anything lower than 19. This finding provides further support for the model,
especially because it is an unanticipated pattern and prediction and had not been explored in the
literature.

It also does not seem that retailers price at 99 out of “convenience” or as if they perceive there
is an inherent higher demand at 99 versus any other price (e.g., a “blip” in demand as discussed
above). Such behaviors are manifested in symmetric missing prices, which is not the case here32.

Next-lowest price by first digit Figure 6 masks the heterogeneity of how price endings differ
across dollar digits. The model predicts that the next-lowest price should increase with the dollar
digit, keeping the bias and elasticity constant. If, as found in Appendix F, the bias is increasing

31In the Nielsen data, the next most popular price endings are 0 (4.2%), 8 (3.7%), and 5 (2.7%). For the retailer,
these are 5 (5.5%), 4 (1.9%) and 0 (1.6%).

32In a related paper, Dube et al. (2017) study wage offer distributions. If employees are left-digit biased and want
higher wages, then wages should be set at round numbers. The authors find excess mass at 0-ending wages, but
missing prices are symmetric. They use the symmetry to argue against left-digit bias in their setting.
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with the price, this prediction intensifies. The share of 99-ending prices is not clearly predicted,
since it relies on the distribution of costs.

In order to examine how price-endings change across dollar digits, I display the left tail of a
by-dollar CDF of price endings in Figure 7. Darker lines are larger dollar digits. Indeed, Figure 7
shows that the distribution of price-endings is shifting to the right, meaning that for higher dollar
digits there are less low price endings.

To recap, firm behavior is qualitatively consistent with the model. Prices bunch at 99, there
are missing prices with low price endings, and the mass of low-ending prices is shifting to the right
as the dollar digit increase.

5.2 Quantitative Predictions

But does the firm behavior align with the predictions of the model given the estimated bias and
elasticities from the demand side estimation in Section 4?

Recall from Proposition 2 that next-lowest prices are decreasing as demand is more elastic and
as the bias is weaker. Therefore, to make it “better” for the firm, I take the low-end estimated
bias level, of 0.16, and the mean elasticity from the IV specification of -1.533. For these levels, the
predictions are that next-lowest prices are 99. In that case there is no ambiguity, all prices should
end at 99 regardless of the cost distribution34. Since only 27% of prices end with 99, 73% of prices
are dominated. To quantify the extent of this misoptimization requires a structural interpretation
of firm behavior.

Keeping in mind that firms do respond to the bias qualitatively, I take an “as if” approach to
infer the perceived left-digit bias levels that rationalize the retailer pricing behavior. I assume that
the retailer is pricing according to the model, parameterized with the perceived price elasticity and
left-digit bias. In other words, in Section 4 I estimated the elasticity and bias that explain demand
behavior, and here I estimate the elasticity and bias that rationalize supply behavior.

The first simple alternative explanation is that elasticities were estimated with bias, but in
reality, known to the firms, demand is more elastic (while left-digit bias is perceived correctly).
However, even for extremely elastic demand (e.g. -15, compare with the most extreme estimates
from Hausman (1996) of -3.17 or Nevo (2001) of -4.25), the next-lowest prices and shares of 99
are much higher than observed. But fundamentally, large discrepancies between the estimated and
perceived elasticity seem unlikely since this is a core parameter for a retailer. In contrast, this
might not be the case for the left-digit bias parameter since I am not aware of a portable way to
estimate it and use it for pricing (which is what I propose with the sufficient statistics approach).
Indeed, if we assume that the estimated elasticity is correct but the bias is perceived to be much

33Since I am comparing the regular prices distribution to the estimates using all prices, it is worth noting that if I
estimate the bias parameters using observations of regular prices only (with NLLS), I get slightly higher estimates,
with median bias of 0.23.

34Further, even for lower bias levels, apart from having a support that includes the costs that generate both a
99-ending price and the next-lowest price above it (i.e., cq, cq), we do not need to make any assumptions about the
cost distribution, c ∼ F , to test the NLP predictions in Proposition 2.
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lower, then the pricing patterns can be rationalized quite well.
Next, I conduct proper estimation. The comparative statics effects of the left-digit bias and price

elasticity allow for identification of the price elasticity and bias solely from the price distribution
under the assumption of constant price elasticity and some parametric cost distribution. This
is of methodological interest, since it allows for price elasticity identification just from the price
distribution even without knowledge of costs or quantities. Absent the bias, this is impossible to
do. Price data are becoming more and more available (e.g, Cavallo (2016), Cavallo and Rigobon
(2016)), and this is a rare case in which a behavioral bias is allowing for estimation rather than
adding a degree of freedom.

Left-digit bias allows for identification since it creates discontinuities in demand. In a sense,
this is the dual of the notch estimation in the taxation literature (see Kleven and Waseem (2013),
Saez (2010)). However, this estimation approach relies on measuring with precision an ill-behaved
statistic which is the next-lowest price. An extremum moment is highly sensitive to measurement
error, and even small heterogeneity can lead to disproportional large effects on the estimands35. In
addition, the price distribution is more discrete than just masses at 99, as almost all prices end with
9. If this is driven by added left-digit bias to the cent digit, different parameters would translate
to the same 9-ending next-lowest price, tampering with the variation needed for identification.

From a practical standpoint, this is also a data-intensive method. It hinges on the assumption
that the cost distribution is smooth for regular prices. While this is probably true aggregating over
many products, it is less likely to hold for a single item. Further, if a product is priced identically
across stores (as is true in the data, especially for regular prices), increasing the number of stores
does not add power.

To satisfy the need for a smooth cost distribution, I am aggregating over products, assuming
a constant left-digit bias and elasticity. Which leads me to the next caveat - the assumption of
homogeneous parameters. Heterogeneity of the bias parameter can of course lead to low-ending
prices, and is definitely plausible, as shown in Section 4. However, identification with heteregoneous
bias relies far more heavily on the shape of the cost distribution, which is an arduous requirement
to infer from the data. I argue that since there is such a stark difference in predictions on aggregate
and product-by-product (there are only 11 out of 3859 popular products whose prices end solely
by 99), assuming a single left-digit bias parameter is a reasonable first step. In addition, in Section
6 I explore the implications of heterogeneous parameters on pricing and profits, and find them to
be small.

Given all the caveats, this is an exercise worth doing even if only for getting rough estimates.
To be less sensitive to the exact measure of missing prices, I will use the entire price distribution
(binned at 9-ending prices) and a method-of-moments approach.

Let Sp be the share of prices set at a price p. I use minimum-distance estimation to match the
empirical price densities, {Sp}, to the predicted price densities,

{
Ŝp
}
(where p belongs to a grand

35Kleven and Waseem (2013) face a similar issue where no one should have income in dominate regions. They
interpret it as frictions, and implicitly assume that frictions are random. The approach I follow is implicitly taking
a similar stance, since I put equal weight on many price moments.
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price vector P). For example, take P = {2.29, 2.39, ..., 3.69}. The algorithm is as follows: (1) Fit a
polynomial to the empirical price distribution using prices that are not bunching at 99 or missing
due to the bias, call that price distribution F̂p. Then, for each pair of elasticity ε and left-digit
bias θ: (2) take all relevant 99-ending prices, {qi} and calculate the matching next-lowest prices
{Pqi} using Equation 5 (for example, say {qi} = {1.99, 2.99} and that {Pqi} = {2.51, 3.53}) . (3)
expand the vector of prices to include {qi}, {Pqi}, and all 9-ending prices between each pair of Pqi
and qi+1, giving a vector of prices P ′ (e.g. P ′ = {1.99, 2.51, 2.59, 2.69, ..., 2.99, 3.53, 3.59, 3.69}). (4)
Given θ and ε calculate for each pi ∈ P ′ the cost cpi , such that pi is the profit-maximizing price.
By construction this is given by the first order condition as cpi = pi

1+ε
ε + θ

1−θ
bpic
ε . (5) Then for

each price, the share of observations at that price are Ŝpi = F̂c
(
cpi+1

)
− F̂c

(
cpi

)
. And we get F̂c

using the following model-induced identity:

F̂c(cp) = Pr(c ≤ cp) = Pr

(
p

1 + ε

ε
+ θ

1− θ
bpc
ε
≤ cp

)
= Pr

(
p ≤ cp

ε

1 + ε
− θ

1− θ
bpc

1 + ε

)
= F̂p

(
cp

ε

1 + ε
− θ

1− θ
bpc

1 + ε

)
(6) expand P ′ to P by adding the missing prices, between qi and Pqi , and assign them predicted

zero shares36.
The above procedure generates the predicted price moments Ŝpi as a function of elasticity ε and

left-digit bias θ. I minimize the distance between predicted moments and actual moments. Since
I am also estimating the densities for prices outside of the missing prices and 99s, I am excluding
these moments from the minimization problem.

This procedure might be somewhat sensitive to which moments are chosen, what moments
are excluded from the fit estimation, and the degree of the polynomial fit. I therefore take 32
combinations of estimation settings37. For example, in one of these settings moments are between
$1.29 and $5.89, using all prices with price endings between 29 and 89 for the F̂p fit, with a
polynomial of degree 3. I minimize the distance of actual moments from predicted with price
endings strictly higher than 89 and lower than 29 (that is 99, 09, and 19), since these are the
prices that were not used to predict the price distribution38. Then, for each setting I run 300

36relabel non-9-ending next lowest prices as the lower 9-ending price, without changing the share. For example,
2.51 will be relabeled as 2.49 with a share Ŝ2.49 = F̂c (c2.59)− F̂c (c2.51)

37I take all combinations of

{bottom− cents} × {top− cents}
×{lowest− dollar} × {highest− dollar} × {polynomial − degree} =

{0.29, 0.59} × {0.79, 0.89} × {$1, $2} × {$5, $6} × {3, 7}

38Appendix Figure 21 shows an example of the actual moments, highlighting which were excluded from the fit to
create the counterfactual distribution in light yellow. The dark bars are the shares that are being matched by the
predicted moments. The predicted moments are shown in semi-transparent bordered bars.
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cluster-bootstraps at the product level.
Table 3 presents the estimation results showing the estimated perceived left-digit bias and price

elasticity for the main sample, using regular prices of the 1710 products. I am guessing 50 initial
values of bias and elasticity and choose the estimation with the best fit. To get confidence intervals
I run additional thousand cluster-bootstraps at the product level (each with 50 initial guesses). I
am estimating homogeneous parameters and find a mean perceived bias of θ̂ = 0.023 and elasticity
of ε̂ = −3.35. I can reject a perceived left-digit bias larger than 0.043, but can not reject that the
price elasticity is -1.5.

If I restrict the elasticity to be -1.5 and only estimate the bias I get tighter estimates (with
similar goodness-of-fit) for the same bootstrapped sample of θ̂ = 0.0047. The similar goodness-
of-fit between the unrestricted and restricted versions means, as predicted by the comparative
statics results, that there is weak identification separating between the elasticity and left-digit bias
parameters. However, the firm is underestimating the bias at least by a factor of 3, and more likely
by an order of magnitude. As a robustness, a break-down of the estimates by specific setting with
95% confidence intervals per each setting is plotted in Figure 8. The figure shows that while point
estimates are sensitive to the moments choice and the assumed shape of the cost distribution (via
the polynomial fit), confidence intervals are stable.

The two rightmost columns of Table 3 are showing the results using the alternative sample of
popular products, namely those with less variation in prices. The same pattern arises, with very
similar estimates for both samples. This is useful since there might be a worry that by choosing the
1710 products that exhibit more variation in prices leads to a mechanical finding of lower perceived
bias (even though the demand side estimates should be consistent with their pricing if the bias is
perceived correctly).

This method can be used to estimate the price elasticity from a price distribution in other
settings, especially if one is willing to take a stance regarding the left-digit bias. Meaning, if the
researcher does not have access to quantities sold nor costs but observe multiple prices for similar
products with fluctuating costs, they can estimate what the firm perceives to be the price elasticity.
Appendix Figure 22 shows the estimated elasticities for the various specifications.

6 Counterfactuals

Left-digit bias and how firms respond to it affect welfare. Left-digit bias of consumers has direct
effects on demand, and the perceived left-digit bias of firms has effects on pricing. Together, these
forces affect firm profits, consumer surplus, and deadweight loss. I examine two counterfactuals.
First, I assume firms optimize and study the effects of left-digit bias versus a no-bias world. Second,
I study underestimation of the bias by the pricing firm. The main findings from these exercises
are that, (1) by lowering prices, left-digit bias has ambiguous effects, and might even increase
consumer surplus and lead to a more efficient outcome; (2) firms lose a few percents of gross profits
by underestimating the bias, with small effects on consumer surplus.

27

 Electronic copy available at: https://ssrn.com/abstract=3413019 



The effects of the bias on demand hinge on the discontinuities at round prices, but also directly
depend on the level shift driven by by ∆ (recall p̂ = (1− θ) p+ θ (bpc+ ∆)). As corner examples,
when ∆ = 0 demand, and hence profits, are higher everywhere, while if ∆ = 0.99 demand and
profits are lower. Clearly, the first order effects on profits are driven by ∆. However, ∆ can not
be inferred from the demand nor supply estimations. Therefore, I focus on comparative statics
conditional on ∆.

Unlike the demand effects,pricing decisions are a function of what the firm perceives the bias
to be, θ̂, rather than the bias itself, θ . A price governed by θ̂ > 0 versus θ̂ = 0 can be higher
(e.g. 4.29 instead of 4.20) or lower (e.g. the price will go down from 4.20 to 3.99). These mixed
movements of prices are key to understanding the overall effects. Importantly, these are functions
of θ and the elasticity, and are not very sensitive to ∆39.

Together, the demand and pricing effects lead to distortions in consumers choice and firms
performance. I will now examine the effects of bias existence when firms respond to it optimally,
and then the effects of firms underestimating the bias.

6.1 The effects of left-digit bias θ > 0

First, consider the case when the firm prices optimally according to the true level of the bias. The
equilibrium outcomes are illustrated in Figure 9. The key idea in interpreting the figure is that
welfare is governed by the true demand curve, prices, and costs. Assume first that ∆ = 0 as in
panel (a). Compared to the outcome with no bias, point x, the equilibrium price with bias θ > 0
can be the 99-ending price below, which is point y. In that case, consumers enjoy the lower price
p(y) and purchase more of it, leading to an increase in consumer surplus represented by the gray
trapezoid; but consumers over-consume because p̂(y) < p(y), leading to a transfer of surplus from
consumers to firms, represented by the triangle. Therefore the overall effect of a lower price depends
on which one dominates. Further, the price might actually go up, as in y′, in which case consumers
are clearly worse off. Deadweight loss is also ambiguous in sign since the overall quantity sold goes
up for prices at 99-ending prices (as in y) but goes down if prices increase due to the bias (as in
y′).40

As shown in Section 2, the left-digit bias pushes some prices up to y and others down to y′.
The average change depends on the exact demand elasticity and underlying cost distribution, but
is fundamentally mixed. Even if the average price across products does not change, due to non-
linearity of demand there can be aggregate effects on quantity sold, and on deadweight loss and
consumer surplus.

In contrast to consumer surplus, one effect is easily determined, which is the effect on producer
39The force pushing prices up are the lower elasticity within a dollar-digit price change, while the force pushing

prices down is the discontinuity in demand at round prices. Both of these forces exist regardless of ∆ even though
their magnitude is affected to some degree. See Proposition 1

40The effects in panel (b), when ∆ = 0.99 are similar. moving from x to y leads to an increase in CS, here even
unambiguously because the 99-ending perceived price is closest to the truth. Still, a change from x to y′ leads to a
decrease.
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surplus as mentioned above.
Because ∆ is unknown I simulate the effects under various assumptions. Indeed, effects vary in

sign and magnitude when assuming different ∆s (see Appendix G and Appendix Table 8). Further,
even fixing ∆, the effects of higher θ can be non-monotonic. Meaning, the possibility of mixed
effects is easily found in simulations.

Overall, even though it might be expected that being biased will necessarily harm consumers
and lead to less efficient outcomes, that is not the case. Consumers bias creates opportunities (or
constraints if ∆ = 0.99) for the firm to gain from lower prices, and as such can effectively cut down
monopolistic margins. It does come at a cost of consumption distortions, but the net effect, on
both consumers and deadweight loss, is inherently undetermined due to the opposing changes in
price.

6.2 The effects of firms underestimating the bias θ̂ < θ

Now consider a scenario, as I find in Section 5, in which firms underestimate the bias. The extreme
version, in which the firm ignores the bias is captured in Figure 9 as point z. The price is the same
as in point x, but the quantity shifts (up in panel (a), down in panel (b)) due to the biased demand.
That is, if there are no price effects, the distortion only harms consumers as it distorts consumption
choices away from the optimum. In contrast, an underestimated bias that is not zero, will mean
that the price will be more likely to be on the curve between (z, y′) - there will be fewer instances
in which the price will go to 99-ending y, and when corrected up will be kept lower than in y′. As
in the previous discussion, the effects on consumer surplus and deadweight loss are ambiguous, for
we are doing a similar comparison between x and y or y′.

It is clear then that the firm is in a worse situation by pricing at z, which is not one of the
possible profit-maximizing options y and y′. But perhaps this is not a costly mistake. For that
reason I will now quantify the profits lost by underestimating the bias. Using the estimates from
the demand side as “the truth”, I compare profits under different pricing strategies: if the firm is
ignoring the bias, fully optimizing, or pricing by the perceived bias as estimated in Section 541.

To be precise, I do the following: I am simulating a cost distribution by taking the actual
price distribution scaled down by a constant markup. I calculate the price for each triplet of cost,
price elasticity ε, and perceived bias θ̂ (assuming elasticity is perceived correctly). Given the true
parameters of the price elasticity ε, and θ, I calculate the profit from each tuple and then integrate.
That is, I calculate

Π =
∫
D
(
p
(
c; ε, θ̂

)
; ε, θ

)
·
(
p
(
c; ε, θ̂

)
− c
)
dF

(
c, ε, θ, θ̂

)
The formula reflects that pricing is governed by the perceived bias, while demand is governed by
actual left-digit bias.

41The reason I am focusing on profits lost is because the sign of these effects is not driven by assumptions, while
other effects (CS and DWL) are sensitive to assumptions, as shown in Appendix Table 8.
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The results are shown in Table 4, where I present the gross profits lost by pricing according
to θ̂ versus the profits if the firm were to price according to θ. As a sensitivity test, I assume
different distributions of the elasticity, left-digit bias, and perceived left-digit bias parameters.
Panel A shows profits lost if the firm were to ignore the bias altogether, that is, price as if θ̂ = 0.
Panel B shows the loss if the perceived bias is as estimated, that is, lower than the actual but not
ignored. In Appendix G I conduct a robustness exercise, where instead of assuming a constant
elasticity demand, I simulate different demand structures stemming from populations with various
latent product valuations. I find similar magnitudes of profits forgone as in the constant elasticity
exercise (see Appendix Table 8).

I take the point estimates from the demand and supply side as a benchmark, and estimate that
the retailer is losing 2.7% of profits versus the optimum, out of a possible loss of 4.3% if were to
ignore the bias. If I assume that the bias is actually lower, at 0.1, that the elasticity is on the high
end from the perceived estimation, at -4, and the perceived bias is also higher at 0.03, I still find
losses of 1.1% of gross profits. I then explore the effect of heterogeneity of each of the parameters,
and it does not carry a large impact on the results. Finally, I also estimate a case of a 2-product
monopolist with an elasticity of substitution of 0.1 between them. For the particular distribution
the potential loss is 3%, and the perceived bias leads to a loss of 1.7%.

In Appendix Table 7 I add two robustness tests for each of the scenarios. In the first I assume
that consumers also ignore the last digit with θ2 = 0.25. It bears a very small effect on the results.
The second robustness is more fundamental. I assume that the bias is such that the focal price
ending ∆ is 99. It decreases the losses to be 1%-2% across scenarios42.

Across scenarios and assumptions I estimate that the retailer may lose 1.1%-3.2% of gross profits.
If, as in Montgomery (1997), operating margins are about 12%, it means that the firm is losing
9%-27% of operating profits by underestimating the bias. Interestingly, following circulation of a
previous version of this paper, Hilger (2018) conducted the same empirical exercise on proprietary
online subscriptions of private vendors, and finds similar effect sizes.

The losses are coming from pricing at dominated regions. Note, also, that as Appendix Figure
19 shows, the overall price level actually does not change much, and if anything is somewhat lower.
This result is insensitive to ∆ as shown in Appendix Table 7. Namely, it does not matter if demand
is overall higher or lower, what matters is that pricing at dominated regions is a costly mistake.

Of course the model of monopolistic pricing is simple, but the exercise is internally consistent,
and shows low sensitivity to other assumptions. Therefore, while I do not find the exact numbers as
important, the magnitude of the effect is robust and economically meaningful. In the next section
I conclude with discussion of possible limitations.

42Considering CS effects in the same pricing scenarios I find that consumer surplus varies a lot with different
assumptions. The effect of firms underestimating the bias changes consumer surplus from -4.6% to +2.8% compared
to if firms were to price according to the true bias. However, pricing with underestimation versus pricing optimally
in a world with no bias at all produces consumer surplus level that are almost the same (0.1%). This is merely
suggestive, as under other assumptions the effects can amount to a few percents.
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7 Conclusions

In this paper I argue that a model of left-digit biased consumers and optimizing firms offers a
sensible description of retail data. Consumers exhibit substantial left-digit bias in everyday choices
while shopping at supermarkets. The supermarkets, in response, are using 99-ending prices and
avoid some low-ending prices to increase demand. However, retailers also seem to underestimate
the extent of left-digit bias. I find that firms do better than pricing as if there is no bias at all, but
not half as good as possible. I estimate that they lose 1%-3% of gross profits, or $60 million annual
revenue on regular price sales. How can it be, that firms at the same time respond to the bias and
stop short of fully optimizing?

Two main explanations for the discrepancy are that either the model is missing something
fundamental, or the firms are making a consistent mistake.

First and foremost, the pricing model is very simple. It simplifies competitive forces to enter
through the price elasticity. Pure price competition with left-digit biased consumers also leads to
missing prices as shown in Appendix B, but I did not solve a full model that can be taken to the
data. Insofar as elasticity is a good approximation for the strength of competition it does reduce the
ranges of missing prices. But, as I argued above, high elasticity by itself is not a plausible resolution
to the discrepancy. Next, consider the case of a multi-product monopolist, as retailers are. Keeping
same-price elasticity and left-digit bias fixed, if differentiated products are substitutes, it leads to
higher next-lowest prices. This result holds whether the other product is more or less elastic, and
whether its cost is higher or lower (see Appendix C). The conclusion, in any case, is that adding
cross elasticities to the counterfactual analysis is likely to make the discrepancy between predicted
and observed retailer behavior even stronger.

Another explanation is that the bias level, θ, might be endogenous to the price distribution.
Meaning, if all prices were to end at 99 as the estimation suggests, then the bias would have become
much lower. Note however, that from a rational inattention standpoint the opposite should hold -
if all prices end with 99, there is no point in paying attention to the rightmost digits and θ → 1.
What might change, perhaps, is ∆. That is, high price-endings increase the focal price-ending and
bring demand down. It is reasonable to assume that the firm is a“∆-taker”, meaning that the focal
price-ending is not store-contingent. In this case, and even in the case where the firm’s own pricing
has low effect on ∆, the optimal pricing is as in the above.

Another avenue is that the model is a reasonable approximation, but firms are wrong. One
possibility is that firms are following a heuristic (“use 99-prices”) and so when the “absent-bias”
price they come up with is close to 99 they round to 9943. The appeal of this story is that it makes
intuitive sense that an absent-bias price of $2.00 should be adjusted to $1.99, but that it is less
clear what a $2.50 should change to. But there is more to it, since not only is it more intuitive to
make small changes in prices, but also the impact on profits is larger for the small changes. For
example, consider two products with unit costs of $1 and $1.25, price elasticity of -2, and bias of

43also “corroborated” by three anecdotal conversations I held with two mom-and-pop shop owners and a CEO of
a large chain of convenience stores.
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0.15. Absent the bias the product should be priced at $2 and $2.50, but with the bias both should
be priced at $1.99. The gains from changing from a naive $2 to an optimal $1.99 are 15.5% in
profits, while the gains from changing a naive $2.50 to an optimal $1.99 are much lower, at 2.6%.
So, given the counter-intuitive nature of big adjustments in price, and considering the relatively
lower gains of big adjustments (masked in fluctuations in demand in real data), it seems reasonable
that firms would stop shy of full adjustment. Making the full adjustment requires either “brave”
and large scale experimentation with prices, or a rigorous analysis with a quantitative model.

A companion paper, Strulov-Shlain (2019), analyzes a policy reform in Israel where supermar-
kets had to stop the common practice of pricing at 99-ending prices, and were only allowed to price
“to-the-dime” (i.e, in 0-ending prices). Before the reform about 40%-50% of prices ended with 99,
suggesting substantial levels of perceived and actual bias. Using the same model as in this paper,
I show that for any reasonable level of left-digit bias, firms should have never round to a 00-ending
price. However, all chains did so, and priced about 20% of products at 00-ending products after
the reform. Within 6-12 months, they stopped. This finding is inline with the heuristic expla-
nation, showing that firms respond to the bias in a limited “trial and error” sense, but without
understanding the underlying model.
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Figure 1: Demand curve of a single product, exhibiting drops at dollar digits
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The figure shows binned demand for a single product (a single UPC). Each dot is the estimate from regressing log-
quantity sold on a 10-cent dummy (e.g., $4.90-$4.99), controlling for store, seasonality, price of other same-category
products, and a promotion fixed effects. To focus on the price support of most common prices, the figure includes
all price points with at least 50 observations. Further details in Section 4. The item in this figure was not chosen at
random, but rather as a motivating example. A systematic analysis is in Section 4.
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Figure 2: Illustration of the optimal price schedule

●●●
●●●

●●●
●●●●

●●●
●●●

●●●●
●●●

●●●
●●●●

●●●
●●●

●●●●
●●●

●●●
●●●●

●●●
●●●

●●●●
●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●

●●●
●●●

●●●●
●●●

●●●
●●●●

●●●
●●●

●●●●
●●●

●●●
●●●●

●●●
●●●

●●●●
●●●

●●●
●●●●

●●●
●●●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●

●●●●
●●●

●●●
●●●●

●●●
●●●

●●●●
●●●

●●●
●●●●

●●●
●●●

●●●●
●●●

●●●
●●●●

●●●●●●●●●●●●●●●●●

interior
 solution

profit
 indifference

99−ending prices

no−bias prices

missing
prices

1.99

2.52

2.99

3.63

3.99

cost

pr
ic

e

The thick lines represent optimal prices as function of cost, of a monopolist facing constant elasticity demand with
left-digit biased consumers. The gray thin line represents the no-bias counterfactual where p = c ε

ε+1 . The horizontal
sections of the thick lines are the 99-ending prices, emerging for regions of costs. The lowest cost that translates to a
99-ending price is when this is the interior solution, and the highest cost is when there is profit indifference between
99 and the next-lowest-price. The resulting ranges of missing prices are highlighted by vertical arrows.
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Figure 3: Illustration: Demand and residuals with and without left-digit bias

(a) Illustration: Demand with left-digit bias
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(b) Illustration: Residualized demand from log-log regression with left-digit-biased demand
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The figures illustrate simulated demand curves under a model of left-digit bias. The top figures show simulated
log(quantity)-price demand curves.Colors represent different dollar digits. The dashed gray line is the curve of best
fit from a logQ~logP regression. Bottom figures show the residualized demand (actual minus predicted) by price.
Right figures are for a case left-digit bias of θ = 0.16, and left figures are for the standard case of no bias, θ = 0.
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Figure 4: Sawtooth patterns of residualized demand by price

(a) Main sample, IV estimation
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(b) Restricted sample of regular prices, OLS estimation
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Net log-demand by price, residualizing product-level price elasticity, seasonality, cross elasticities, store fixed effects,
and promotion effects. Regressions are conducted at the product level (1710 products, 248 stores, 177 weeks).
Different dollar digits are designated by color. Within-dollar linear fits, weighted by number of observations, are
added in solid lines. Plotted fixed effects estimated at 10-cent bins (e.g. $3.90-$3.99), and 95% confidence intervals
are the result of 300 cluster-bootstraps by store. The top panel is using data on all to-the-cent prices (Column (3)
in Table 1), and the regression is run with instrumental variables, as specified in equation 6. Bottom panel presents
the results of an OLS constructed on regular prices only (column (4) of Table 1). Results shown for prices between
$1 and $7.99 for clarity. See Section 4.1.
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Figure 5: Histogram of product-level left-digit bias estimates from drops in demand at the dollar-
digit

The figure shows the histogram of product-level estimates of left-digit bias, calculated from Equation 7, using esti-
mated drops in demand and price elasticity estimated with instrumental variables. Highlighted by darker color are
the 75% most precise estimates. Most impercise estimates are also outliers and vice versa.
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Figure 6: Pricing response: Price-endings distributions

(a) Retailer Data
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Source: 1710 products, regular prices, retailer.

(b) Nielsen Data
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Source: 12 products, spells of at least 6 weeks, Nielsen.

The figures show the price-endings histograms of all regular prices in the retailer data (36M observations, top panel),
and all prices that belong to spells of at least 6 weeks in the Nielsen data across more than 60 retailers (11M
observations, bottom panel). Main patterns are excess mass at 9- and 99-ending prices, and missing prices at low
price endings.
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Figure 7: Price endings: left-tail of CDF by dollar digit in retailer data

(a) Left tail of CDF for regular prices of main sample
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(b) Left tail of CDF for regular prices of full sample
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The figures show the left-tails of regular prices price-endings empirical CDFs, by dollar digit. The top panel is the
main sample, while the bottom uses all regular prices in the data. Line color represents the first digit of the price,
where $1+ is the lightest and $8+ is the darkest. The figures show that as prices increase, the firm is using less of
lower price endings, qualitatively following the predictions from Corollary 1.
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Figure 8: Estimated firm-perceived left-digit bias
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The figure shows the estimated perceived left-digit bias inferred from the price distribution. On the horizontal axis
are different assumptions about the estimation procedure. Namely, the range of prices used for estimation, the
excluded prices from the counterfactual price distribution fit, and the shape of that distribution via the polynomial
degree. Each point is the estimated perceived left-digit bias for each specification, and the confidence intervals are
the 2.5% and 97.5% estimates from 300 cluster-bootstraps of the moments at the product level (that is why some
point estimates are outside of the confidence interval).
For all specifications, I can reject that the perceived bias is 0 or larger than 0.05. While point estimates are sensitive
to the exact specification, bootstrapping the sample provide more similar confidence intervals.
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Figure 9: Ilustration of welfare effects
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(b) Equilibrium outcomes with ∆ = 0.99
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The figures describe the optional equilibrium quantities and prices under different levels of left-digit-bias and firm
perception of the bias. Point x is the solution in the standard no-bias case, on the gray no-bias demand line. The
no-bias demand line captures the true underlying valuation of the product. In contrast, the dotted line shows the
demand under the perceived price p̂ = (1− θ) p + θ (bpc+ ∆). Panel (a) shows the biased demand when the focal
price-ending is 0, hence demand is higher everywhere; while panel (b) shows the biased demand when the focal price
ending is 99. Points y and y′ describe the new possible equilibrium outcomes when there is left-digit bias θ = θ̂ > 0.
Point y is the outcome when the optimal price is the lower 99-ending price, and point y′ is the outcome for interior
price updating. Finally, point z is the outcome when there is bias θ > 0 but the firm prices as if there is no bias,
θ̂ = 0.
Consumer surplus is the area between true demand and the price for all quantity sold. If there is over-consumption
(as in point y of panel (a)), where the price is higher than true demand, this is negative consumer surplus. Producer
surplus, or firm profits, is the area between the price and marginal cost for all quantity sold. Deadweight loss is the
area between true demand and marginal cost for all unsold quantity in which demand is higher than cost.
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Left-Digit Bias and Firm Pricing: Online Appendix Not for Print
Publication

A Proofs

A.1 Proof - Proposition 1

To see that equation 3 describes the optimal price, we will proceed in the following steps.

A.1.1 Interior solution

Consider the classic setting. There, since demand is convex, it satisfies the second order condition
globally, and hence the first order condition is sufficient to characterize the solution. Here, the
second order condition is satisfied locally, meaning that any interior solution is a local maximum.
However, demand is not convex when changing the first digits. Therefore, one must also check for
other prices, where convexity is not satisfied.

The first order condition is
∂Π
∂p

= 0 = Aε ((1− θ) p+ θp1)ε−1 (1− θ) (p− c) +A ((1− θ) p+ θp1)ε

0 = ε (1− θ) (p− c) + (1− θ) p+ θp1

p = c
ε

1 + ε
− p1

θ

1− θ
1

1 + ε

p =
(
c− θ

1− θ
q1 + 1
ε

)
ε

1 + ε

Where the last transition is due to that p1 = q1 + 1 given a range of costs as in proposition 3,
So, first, for any cost c, we can find a local maximum being the interior solution, as presented in
the second row of equation 3. Note that this solution is strictly increasing in c, as long as p1 does
not change.

A.1.2 First case, c < cq

Since demand is locally convex, and isoprofits are strictly convex, it is sufficient to rule-out an
interior solution as being optimal if the profits at the highest price below the discontinuity are
higher. So, if p∗(c) is the interior solution and c < cq, we need to show that D (q) (q − c) >
D (p∗) (p∗ − c) where q = p1 − 0.01:

D (p∗) (p∗ − c) +D (p∗) (c− cq) = D (p∗) (p∗ − cq)
< D (P ) (P − cq)
= D (q) (q − cq)
= D (q) (q − c) +D (q) (c− cq)

⇔ D (p∗) (p∗ − c) < D (q) (q − c) + (D (q)−D (p∗)) (c− cq)
< D (q) (q − c)

Where the first inequality (second row) is due to P being the optimal price for cq, and the last
inequality (last row) is since c < cq and D (q) > D (p∗).

Once we have shown that q is more profitable than p∗, to see that the optimal price in that
case is q itself, note that since demand is locally strictly convex between discontinuity points, if
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the profit at q is higher than at the interior solution it means that the slope of the isoprofit (in the
quantity-price dimension) is less steep than the demand curve, meaning that profits at q must be
maximal for these costs. This is only true for θ low enough, such that there is not another point
where demand is crossing the isoprofit44.

A.1.3 Second case, c > cq

We want to show that if c > cq, then the interior solution is more profitable than q. That is, that
Π (p∗, c) > D (q) (q − c) . Define p′ as the price that given demand D (q) results in the same profits
as Π∗ = Π (p∗, c). That is,

p′ = Π∗

D (q) + c

= Π∗ −Πq

D (q) + q + (c− cq)

⇒ p′ − q = Π∗ −Πq

D (q) + (c− cq)

> (c− cq)
(

1− D (P )
D (q)

)
> 0

where we used that Π∗ = Π (p∗, c) > Π (P, c) = Πq −D (P ) (c− cq), and that D (P ) < D (q). So,
since p′ > q it means that Π (p∗, c) = D (q) (p′ − c) > D (q) (q − c).

A.2 Proof - Proposition 2

Rewriting equation 5,

P + (1− θ)P + θP1
ε (1− θ) − ((1− θ)P + θP1)ε P − ((1− θ)q + θq1)ε q

((1− θ)P + θP1)ε − ((1− θ)q + θq1)ε = 0

P

(
1 + 1

ε

)
+ TP1

ε
− (P + TP1)ε P − (q + Tq1)ε q

(P + TP1)ε − (q + Tq1)ε = 0

P

(
1 + 1

ε

)
+ TP1

ε
− ΛεP − q

Λε − 1 = 0

P (1 + ε) (Λε − 1) + TP1Λε − TP1 = ΛεPε− qε
(P + TP1) Λε = P + TP1 + (P − q) ε

Λε = 1 + (P − q) ε
P + TP1

(8)

where T ≡ θ
1−θ , the likelihood ratio of being inattentive and Λ ≡ P+TP1

q+Tq1
.

44i.e., θ needs to satisfy that Π
(
q, cq

)
≥ Π

(
q − 1, cq

)
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A.2.1 The effect of elasticity on nl-price

First, note that ∂Λ
∂ε = ∂P

∂ε
1

q+Tq1 . Then, differentiating equation 8 with respect to ε,

(P + TP1) Λε
(

ε∂P∂ε
P + TP1

+ ln Λ
)

+ ∂P

∂ε
Λε = ∂P

∂ε
+ ∂P

∂ε
ε+ P − q

∂P

∂ε
(Λε − 1) (1 + ε) + (P + TP1) Λε ln Λ = P − q

∂P

∂ε
= P − q − (P + TP1) Λε ln Λ

(Λε − 1) (1 + ε) > 0

To see that note that the denominator is positive for ε < −1, since Λ > 1. Further, the enumerator
is positive iff

(P − q) (q + Tq1)ε − (P + TP1)ε+1 ln
(
P + TP1
q + Tq1

)
> 0

It is easy to see that the above term equals zero for P = q. We now show that it is increasing in
P , and hence positive, since P > q. To see that it is increasing in P , differentiate to show

(q + Tq1)ε − (ε+ 1) (P + TP1)ε ln
(
P + TP1
q + Tq1

)
− (P + TP1)ε > 0

⇔ 1 > Λε (1 + (1 + ε) ln Λ)

and note that Λε < 1, and that ln Λ > 0 and ε < −1 hence (1 + (1 + ε) ln Λ) < 1.

A.2.2 Proof of corollary, effect of dollar digit on nl-price

We know that the NLP satisfies:

((1− θ)P + θP1)ε
(
−(1− θ)P + θP1

ε (1− θ)

)
− (9)

((1− θ)q + θq1)ε
(
q − P · 1 + ε

ε
− θP1

(1− θ) ε

)
= 0 (10)

p̂ε
p̂

ε (1− θ) + q̂ε
(
q − p− p̂

ε (1− θ)

)
= 0 (11)

q̂ε (q − p) ε (1− θ) = p̂ (q̂ε − p̂ε) (12)

Where the transitions are just algebraic simplifications, and writing the perceived price instead
of its components. To prove the corollary I ask if it is possible that the NLP will be that same for
two consecutive dollar digits, pq+1 = pq + 1. That is if,

(q̂ + 1)ε [(q − p) ε (1− θ)] Q (p̂+ 1) ((q̂ + 1)ε − (p̂+ 1)ε)
(q̂ + 1)ε

[
p̂ (q̂ε − p̂ε) q̂−ε

]
Q (p̂+ 1) ((q̂ + 1)ε − (p̂+ 1)ε)

p̂

p̂+ 1 Q
1−

(
p̂+1
q̂+1

)ε
1−

(
p̂
q̂

)ε
if ε = −1 it holds with equality:

p̂

p̂+ 1 =
p̂+1−q̂−1
p̂+1
p̂−q̂
p̂

= p̂

p̂+ 1
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but if ε < −1, as assumed all over, then the RHS is lower. Meaning, that the equality does not
hold.

A.2.3 The effect of inattention on nl-price

How does higher inattention affects the next lowest price? Differentiate equation 8 with respect to
θ:

(ε+ 1)
(
P + TP1
q + Tq1

)ε (∂P
∂θ + ∂T

∂θ P1
)

(q + Tq1)− ∂T
∂θ (P + TP1)

q + Tq1
+

∂T

∂θ
q1

(
P + TP1
q + Tq1

)ε+1
− ∂P

∂θ
(1 + ε) = ∂T

∂θ
P1

(ε+ 1)
(
∂P

∂θ
+ ∂T

∂θ
P1

)
+

∂T

∂θ
(q1 − 1− ε) P + TP1

q + Tq1
− ∂P

∂θ
(1 + ε)

(
P + TP1
q + Tq1

)−ε
= ∂T

∂θ
P1

(
P + TP1
q + Tq1

)−ε

∂P

∂θ

(
1−

(
q + Tq1
P + TP1

)ε)
= 1

(1− θ)2

(
P1

1 + ε

(
q + Tq1
P + TP1

)ε
− P1 +

(
1− q1

ε+ 1

)
P + TP1
q + Tq1

)
the term in parentheses on the left-hand side is negative, so the effect is determined by the opposite
sign of P1

1+ε

(
q+Tq1
P+TP1

)ε
−P1 +

(
1− q1

ε+1

)
P+TP1
q+Tq1

. This is sign is always negative for ε < −1 for q1 > 0.

To see that P1
1+ε

(
q+Tq1
P+TP1

)ε
−P1+

(
1− q1

ε+1

)
P+TP1
q+Tq1

< 0, recall that P−q = ∆ < 1 and P1 = 1+q1.
Then, we need to show that

P1
1 + ε

(
q + Tq1
P + TP1

)ε
+
(

1− q1
ε+ 1

)
P + TP1
q + Tq1

< P1

P + TP1
q + Tq1

1 + ε− q1 + P1
(
q+Tq1
P+TP1

)−(1+ε)

1 + ε

 < 1 + q1

focusing on the LHS, using that ε < −1 and P1 = 1 + q1:

P + TP1
q + Tq1

1 + ε− q1 + P1
(
q+Tq1
P+TP1

)−(1+ε)

1 + ε

 <
P + TP1
q + Tq1

(2 + ε

1 + ε

)
<
P + TP1
q + Tq1

then it is left to show that
P + TP1
q + Tq1

= q + ∆ + T (1 + q1)
q + Tq1

< 1 + q1

or

q + ∆ + T (1 + q1) < (1 + q1) (q + Tq1)
∆ + T < q1 (q + Tq1)

and since ∆ + T ≤ 1 + T , if q1 ≥ 1, then q + Tq1 > 1 + T . If q1 = 0 then this inequality does not
hold.
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B Price Competition
In that section we solve for a price competition model where some consumers are inattentive to the
first digit. However, the solution is for a continuous pricing, and the proof relies on the continuity
of the price domain.

Varian, 1980, with a different motivation and interpretation, solved a closely related model in
his seminal paper “A Model of Sales”. We solve a Varian-variant model, where there are N firms
that have no costs of producing a homogeneous good. Prices can be set continuously between 0 and
2. A measure 1−θ of consumers is attentive, and a measure θ is partially inattentive. An attentive
consumer buys from the cheapest firm (or randomizes between all cheapest firms.) A partially
inattentive consumer has a coarse perception of the price, seeing the price as being “weakly less
than 1” or “strictly more than 1”. So a partially inattentive consumer is equally likely to purchase
from any firm who prices below 1, or if no firm prices below 1, from those who price above 1.

Proposition 3. There is no pure strategy equilibrium in this game

Proof. Assume all firms play a strategy p. If p > 0 an ε downward deviation from a positive price
will lend a firm the entire attentive market, while a price strategy of 0 is sub-optimal since setting
the price at any 0 < p ≤ 1 gives positive profits from the partially inattentive market.

Think of a mixed strategy as a cumulative distribution function F (with the accompanying PDF
f) over prices and consider symmetric equilibria. Given F , notate φ ≡ F (1) as the probability of a
firm pricing below 1. Define a simple mixed equilibrium as a symmetric equilibrium where φ = 1,
and a truly mixed equilibrium as a symmetric equilibrium where φ ∈ (0, 1).

Proposition 4. (1) There exists a simple mixed equilibrium where F (1) = 1 and firms mix over
[p0, 1] according to a unique Fθ,N , p0 > 0.

(2) There sometimes exist a truly mixed equilibrium as a function of θ and N , where firms mix
over [p0, 1] ∪ [p1, 2] according to a unique Fθ,N , where p0 > 0 and p1 > 1.

An immediate corollary is that in any equilibrium, firms will not price at the point of disconti-
nuity. Taking this simplistic, continuous domain model to our setting, the price of “1” represents
the highest price before the drop in demand, i.e. prices that end with 99 before the policy or 90
post policy. So, that model predicts no pricing at 00.

Proof. Given φ from each firm’s perspective, the number of other firms pricing under 1 is described
by a binomial distribution x ∼ B(N − 1, φ). It must be that φ > 0, since if all firms price above 1,
a deviation to 1 gives an expected payoff of 1, while the expected payoff from F must be strictly
less than 2

N (since all firms have the same expected profit, and the maximal industry profit is 2).
A firm’s expected market share from a price p ≤ 1 is

X(p|p ≤ 1) = (1− θ) (1− F (p))N−1 + θE
[ 1

1 + x

]
= (1− θ) (1− F (p))N−1 + θ

1− (1− φ)N

Nφ

A firm’s expected market share from a price p > 1 is

X(p|p > 1) = (1− θ) (1− F (p))N−1 + θ
(1− φ)N−1

N
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In each region, above or below 1, the CDF has no mass points. To see that, assume there is a
mass point then it is profitable for a firm to shift that mass a little bit to the left45.

Also, within each region there are no gaps. Assume there is, i.e. f(p) = 0 for all p ∈ (p, p)
where either p < 1 or p > 1 . Then, it is profitable to shift a probability from f(p) > 0 to a price
in the gap region, thus only increasing profit without changing the probability of winning it. For
the same reason f(1) > 0 and f(2) > 0.

Call an equilibrium where φ < 1 a “truly mixed equilibrium”. From the above, the support
of the CDF in a truly mixed equilibrium is [p0, 1) ∪ [p1, 2]. Now, we can find the CDF using
the indifference principle, stating that the expected profit of every price point should be equal.
Explicitly, it should be that the payoff is the same as for p = 1. So, the expected payoff is

(1− θ) (1− φ)N−1 + θ
1− (1− φ)N

Nφ

From that we can also find the lowest price p0, since F (p0) = 0. So,

p0

(
(1− θ) + θ

1− (1− φ)N

Nφ

)
= (1− θ) (1− φ)N−1 + θ

1− (1− φ)N

Nφ

p0 =
(1− θ) (1− φ)N−1 + θ 1−(1−φ)N

Nφ

(1− θ) + θ 1−(1−φ)N
Nφ

Notice that if φ = 1, all firms never price above 1, then p0 = θ
N(1−θ)+θ , as in Varian 1980.

What is p1? F (p1) = φ, the price is higher than 1, but the expected share of inattentives is
conditional on all firms pricing above 1. That is,

p1

(
(1− θ) (1− φ)N−1 + θ

(1− φ)N−1

N

)
= (1− θ) (1− φ)N−1 + θ

1− (1− φ)N

Nφ

p1 =
(1− θ) (1− φ)N−1 + θ 1−(1−φ)N

Nφ

(1− θ) (1− φ)N−1 + θ (1−φ)N−1

N

Next, notice that F (2) = 1, and from the indifference principle,

2θ (1− φ)N−1

N
= (1− θ) (1− φ)N−1 + θ

1− (1− φ)N

Nφ

(1− φ)N−1
(

2−N 1− θ
θ

+ 1− φ
φ

)
= 1
φ

(1− φ)N−1
(
φ

(
2−N 1− θ

θ

)
+ (1− φ)

)
= 1

This equation determines φ, if it even exists. Note that the leftmost term is smaller than 1,
and the term in parentheses is a weighted average of 1 and 2−N 1−θ

θ . If that last term is less than

45If there is a mass point at 1, then it is profitable to shift it to just below 1 and gain θ 1−(1−φ)N−(1−φ)N−1φ
Nφ

=

θ 1−(1−φ)N−1

Nφ
> 0
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1, then no φ can solve that equation. So, a necessary condition for such an equilibrium to exist is
that

2−N 1− θ
θ

> 1

N
1− θ
θ

< 1

N <
θ

1− θ θ >
N

1 +N

For example, if N = 2 then θ > 2
3 . In practice, we assume that the share of inattentives is likely

to be small. However, this restriction relies on the marginal costs being 0. A higher marginal cost
0 < c < 1 will alter the above indifference,

(2− c)θ (1− φ)N−1

N
= (1− c)

(
(1− θ) (1− φ)N−1 + θ

1− (1− φ)N

Nφ

)

(1− φ)N−1
(
φ

(2− c
1− c −N

1− θ
θ

)
+ (1− φ)

)
= 1

Therefore, the above constraint is relaxed to be θ > N
1

1−c+N . For example, if N = 2 and c = 0.5,

then θ > 1
2 instead of 2

3 . Still, we need a small N and high c to bring the bound on θ to reasonable
values.

In any case, if φ = 1 we are almost back to the Varian case, and an equilibrium exists. Call it a
“simple mixed equilibrium”. To see that, assume that all firms play F such that F (1) = 1. Then,
deviating any density to above 1 gains nothing - both attentives and inattentives will not buy at
that price. Therefore a simple mixed equilibrium, as already characterized by Varian, exists. This
is actually a way to make the arbitrary assumption that Varian makes, of a bound on the maximal
price, to be weakly less arbitrary.

C Multi-product Monopolist
Even though single-item sellers use 9-ending prices as well (firms such as Netflix, or Amazon, or
in house listings Repetto and Solis, 2018), supermarkets are sellers of multiple items. Substitution
between differentiated products is a main focus and an empirical challenge that spans a huge
literature (see review by Nevo, 2011). How does simultaneous pricing of multiple products with
cross-elasticities between them affect the firm pricing behavior regarding 9-ending pricing?

To keep the problem simple, consider a firm that sells two products setting prices to maximize
profit of the form

Π = D (pi, pj ; θ) (p− c)

where D = (Di, Dj) is a vector of demand for items i and j, p = (pi, pj) is the prices vector, and
c = (ci, cj) is the unit costs vector. Let

Di = Aip̂
εii
i p̂

εij
j

where εii is the same price elasticity, and εij = εji is the cross-product elasticity. Then the firm’s
problem is to maximize

Π = max
pi,pj

Aip̂
εii
i p̂

εij
j (pi − ci) +Aj p̂

εij
i p̂

εjj
j (pj − cj)
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If the cross-elasticity is 0, we are back to the single item monopolist, since the problem is
separable. Deriving a closed-form solution is possible, but it is not very insightful, in the sense that
I do not have any comparative statics to provide. Instead, I solve the problem numerically, and
focus attention on the effects of adding cross elasticities on the region of missing prices (numerical,
local, comparative statics). Figure 20 provides an example for such effects. Here, the black curves
describe the price versus cost of product i, when product j has a cost of 1.5, and the orange curves
are the price of product j. Both items have same price elasticity of -2, and cross-elasticity is either
zero (the solid lines) or 0.1 (the dashed line). Margins of product i are higher due to the substitution
with product j. Also, the arrows point to the lowest-prices of 4.67 in the single item case, and 4.73
with the cross-elasticity.

The finding of a higher next-lowest price for higher substitution holds in more general simu-
lations – when I allow for varying costs for the other item as well (taking the next-lowest price
regardless of the other items underlying cost), different same-price elasticities for each product,
and at various levels of left-digit bias. Further, it holds for both the more expensive and cheaper
product. While this is hardly a proof, it seems to be a plausible conjecture.

D Nielsen Data
Here I describe the Nielsen data, and discuss its issues and the solution I propose.

Nielsen Retail Scanner (RMS) and Consumer Panel (HMS) data are provided by the Kilts
Center at the University of Chicago. RMS records weekly UPC-store level quantity and revenues.
Summary statistics are described in column (1) of Appendix Table 1. The sample consists of 28
million observations of 12 products from DellaVigna and Gentzkow, 2019, selling in 11000 stores,
with a total of 188 million units sold for $881 million. The average price is at $5.51, with a standard
deviation of 2.81.

The data is similar to the retailer’s data, with the key advantage being that it includes the clien-
tele and pricing behavior of more than 60 retailers rather than one. Another pragmatic advantage
is the longer panel of 9 years instead of 3.5. However, the data have three main disadvantages, and
as such is not part of the main analysis. First, prices are rounded such that they are always “to
the cent”, thus not allowing to infer if an observation represents a fictitious price. Second, Nielsen
measurement weeks start on Sunday, and are not always aligned with a retailer’s price changing
frequency. For example, some chains change their prices weekly but do so on Wednesdays, so if
a price changed the Nielsen price will mix sales with one price for Sunday-Tuesday and another
for Wednesday-Saturday. Measurement misalignment leads to far more fictitious prices than in the
retailer data. Finally, only the weekly average price is observed, excluding a simple way to infer
if a price is on-sale or not. Additional variables, “promotion” and “display”, are available but are
missing for 80% of the observations.

To solve the issues of fictitious prices and sale prices I use a new, yet simple, data cleaning
technique. If an observed price of a unique product in a certain store is the result of averaging
different prices, it is unlikely to be identical to the price in the following week 46. For example,
imagine there is a discount to club members only, so some consumers pay $4.99 and others $4.29.
In order for the “weekly” price to be the same across weeks, the share of club members among
weekly consumers must be kept exactly the same. Therefore, I define for each product-store the
spell length of each price and exclude 1-week spells. Longer spells are also more likely to be regular
prices, or conversely, shorter spells are more likely to be on-sale prices. Therefore, while I can not
directly observe if a product is on-sale in a certain week, I proxy for it with the spell length. The

46Mostly true for a popular product purchased in multiple units each week, otherwise might be likely.
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spell length proxy has the advantage of not inferring an on-sale by price, which is problematic since
regular prices also change.

These intuitive arguments are corroborated using the retailer data, where they can be directly
examined. In Appendix Figure 12 I am testing these conjectures for the 1710 products of the retailer
data. The black circles show the share of observations that are real (to the cent) conditional on
the spell length. About 50% are real for a 1 week spell, and that share jumps to 95% for 2 week
spells, and gets close to a 100% for 3 weeks and longer. The yellow triangles show that share
of observations that are regular prices (not on-sale) by spell length. About 25% of 1-week spells
represent regular prices, 40% at 2 weeks, and by 6 week spells almost all are regular prices.

The price ending distributions, depicted in Figure 10, further depicts and support the data
cleaning procedure. To recap, non-real prices are excluded in the retailer data by excluding non-
round prices, and in Nielsen data by excluding 1 week spells. An observation is on-sale in the
retailer data if the net price is lower than the regular price, and in Nielsen I add dummies for 2,3,4,
and 5 week spells to proxy for on-sale propensity (motivated by Appendix Figure 12). Indeed, a
similar qualitative pattern appears in both data sets even though the data cleaning procedure is
different. The figure shows the shares of observations that end with 9, 0, or other price-ending,
and each color bars describe a different cut of the data. Moving from all observations to a sample
that includes only “real” prices (to-the-cent or at least 2 weeks spells), decreases the shares of
non-9 non-0 observations, which add almost solely to 9-ending prices. i.e., without that exclusion,
about a third to half of observations in other price endings should be attributed to 9-ending prices.
Further focusing on likely regular prices (observable in the retailer data, and defined as at least 6
week spells), increases the share of 9-ending prices, but on the expense of 0-ending ones. That is,
0-ending prices are mostly on-sale prices or more transient price spells.

E Other Estimation Techniques
E.0.1 Non-linear Least Squares

An alternative to the sufficient statistic approach is to estimate the model via non-linear least
squares. The advantage of this approach is that it is a direct specification of the model. The
disadvantage is that it relies on numerical optimization and is not run with instrumental variables.
Namely, instead of regressing log-quantity on log-price, I regress log-quantity on log-perceived-price,
and estimate the elasticity and θ simultaneously:

logQist =εilog ((1− θ)Pist + θ bPistc) + (13)
αilogPc(i)st + βis + γi,year(t) + δi,month(t)+
µi,on.sale(ist) + µ′i,spell(ist) + νi,cents.digit(ist) + eist

To estimate it I code the analytical gradient and hessian, and minimize the sum of squared
errors with a numerical optimizer. I get the initial guess from running an OLS without the bias,
and guessing a θ of 0.2 (I get the same results for different initial values of θ). The identifying
assumption being that variation in prices and in price-endings is not driven by changes in elasticity.
I am relying on variation in prices within and between dollar digits, absorbing the variation across
years, month of year, stores, sale effects, and last digits with fixed effects. In the NLLS I do not
instrument with other prices, and to get standard errors I use cluster bootstrap, sampling different
stores with replacement. The CDF of product level estimates is the dashed blue curve in Appendix
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Figure 17, which is very similar to the estimates coming from the drops. As shown in Table 2, the
mean bias is 0.24 and the median is 0.18.

E.0.2 Semi-elasticity

A third method is to assume a log-linear structure instead of a log-log estimation. This is a further
test of the way left-digit is modeled, since we should get the same estimates under a different
demand structure. It has the key advantage that the bias can be estimated linearly in a simple
OLS. That is, instead of the standard log-linear structure of logQ ∼ P , I regress logQ on P + bP c.
That is, I run at the product level

logQist =ηi (1− θi)Pist + ηiθi bPistc+ (14)
αiPc(i)st + βis + γi,year(t) + δi,month(t)+
µi,on.sale(ist) + µ′i,spell−length(ist) + νi,cents.digit(ist) + eist

where η is the semi-elasticity (the change in log quantity due to a unit change in prices), and the ratio
of estimated coefficients on the price and the floor of the price gives the ratio of 1−θ

θ
47. Reassuringly,

the estimates from that approach are similar to the estimates from the NLLS approach, as can be
seen in Figure 17. The estimates have a correlation of 0.85 and a rank correlation of 0.91. As
shown in Table 2, the mean bias is 0.20 with a median of 0.16.

The near-identical estimates across estimation techniques and demand structures imply that
the left-digit bias parameter is robust to the assumed demand curve shape, and supports its inter-
pretation as ignoring the exact lower digits.

F Bias Heterogeneity
Armed with estimates of the bias at the product level, we can ask how does the bias change according
to the product characteristics? A few mechanisms are interesting to look at. First, a mechanism
of relative thinking might be in place. The idea was introduced by Tversky and Kahneman, 1981
with the famous calculator-jacket example. Namely, 68% of respondents take the same hypothetical
effort for a $5 discount if it is out of a $15 item, while only 29% if it is out of a $125 item. Needless
to say, this kind of behavior is not consistent with utility maximization. While different theories
were developed (e.g., Azar, 2007; Bushong, Rabin, and Schwartzstein, 2015), field evidence for
the effect is rare (with the recent exception of Hirshman, Pope, and Song, forthcoming). In this
left-digit bias setting, a manifestation of relative thinking is if the bias is higher for high ticket
items, everything else constant. Meaning, if a cent out of a $2 item weighs more heavily than a
cent out of an $8 item. Already hinted in Figure 4, the drops are not shrinking for higher dollar
digits. According to the sufficient statistic formula, with the same elasticity and demand drop size,
the bias is increasing linearly with the dollar digit. Thus, it seems likely to suspect that relative
thinking might be affecting the bias.

Higher bias for more expensive products is irrational if a single unit is purchased of each item.
However, if cheaper items are also purchased more frequently and in multiple units by purchasing
households, the price level correlation might be a proxy for a form of rational inattention. Therefore,
I turn to Nielsen HomeScan Panel (HMS), and calculate for each product the average number of

47Specification 14 also emphasizes why ∆ is not identified. Indeed, ηiθi∆ is absorbed by the fixed effects.

59

 Electronic copy available at: https://ssrn.com/abstract=3413019 



units purchased of an item, conditional on it being purchased in a shopping trip48. If the bias is a
form of deliberate inattention, focusing more on products whose last-digits weight on the budget
is higher, we should expect more frequently purchased items to be correlated with lower bias.

Finally, one might be curious how the demographics of purchasing clientele are related to the
bias. I focus on two main variables, household income and education, also taken as the average
level of those by purchasing households in the HMS. Income has an ex-ante unknown sign, since
low income might be correlated with more behavioral biases (CITES), but high income people
might care less about the cents (recall, the bias is above and beyond the overall product price
elasticity). Education is expected to be more clearly, correlated with less bias (e.g. Bronnenberg,
Dubé, Gentzkow, and Shapiro, 2015).

Since I have various measures of the bias from the three methods discussed above, each with its
benefits and drawbacks, I use a simple mean as the bias measure. This is a crude way of minimizing
sampling error in the estimates. The simple correlates appear in Figure 18. As hinted above, price
(panel a), is positively correlated with the bias; demand is negatively correlated (panel b); and
education and income are less clearly correlated (panels c and d).

More important than the univariate correlations, is how are these affected when taken together.
In a multivariate case we can look at the price effects controlling for number of units purchased,
or on the education effects controlling for income. Table 6 show these results. Columns 1-4 are the
univariate regressions of the bias on the four different variables, while columns 5-7 are multivariate
versions taking all variables together. Column 7 adds subcategory fixed effects to look at the
variation of the bias within products of the same type (e.g., “coffee”, “rice”, “cottage cheese”,
or “refrigerated orange juice”). The overall picture is that both price and number of units are
associated with the bias, where a 1% higher price is associated with a 0.21 (standard error 0.04)
points higher bias (that is additional 2.1 cents are ignored), while a 1% higher number of units
purchased is associated with 0.22 (0.09) points lower bias. Income is positively correlated with
the bias, and education negatively so, but the estimates are not significantly different than zero.
Meaning, we find suggestive support for both relative thinking and deliberate inattention.

G Welfare
How does the bias affects welfare? Section 6 discusses the basic concepts, of the demand and price
effects. Here I will present a more formal treatment, followed by simulations demonstrating the
comparative statics.

G.1 Constant elasticity

For exposition purposes, I begin with the monopolistic constant elasticity demand benchmark of
the paper. Recall that demand is a function of price and left-digit bias, D (p, θ) = Ap̂ε.

• Profits given a price p∗ and unit costs c are

Π = Ap̂ε∗ (p∗ − c)

since p∗ = (1− θ) p∗ + θ (bp∗c+ ∆), if ∆ = 0 then the price with bias is always perceived as
lower than it is p∗ (θ) ≤ p∗ (0), and in contrast if ∆ = 0.99 then p∗ (θ) ≥ p∗ (0). So, for ∆ = 0
(∆ = 0.99)demand is higher (lower) for every price, and therefore profits are higher (lower)
by assumption.

48I also calculate the total number of units purchased within a year, the results are very similar, but the per-trip
purchases seem like a more relevant measure.
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• Consumer surplus is the value created by the transaction. Meaning, the area above the price,
p∗, and potentially demanded quality if the price were perceived correctly. That is,

CS =
∫ D(p∗,θ)

D(∞,θ)

(
D−1 (q, θ = 0)− p∗

)
dq =

∫ Ap̂ε∗

0

((
q

A

) 1
ε

− p∗

)
dq

which can be broken down to the surplus absent a bias and the transfer from consumers to
producers from overconsumption if there is any

=
∫ Apε∗

0

((
q

A

) 1
ε

− p∗

)
dq −

∫ Ap̂ε∗

Apε∗

(
p∗ −

(
q

A

) 1
ε

)
dq

which equals in total

CS = A

(
ε

ε+ 1 p̂
ε+1
∗ − p∗ · p̂ε∗

)
= A

(
ε

ε+ 1 [(1− θ) p∗ + θ (bp∗c+ ∆)]ε+1 − p∗ · [(1− θ) p∗ + θ (bp∗c+ ∆)]ε
)

• Deadweight loss is the amount of surplus that could have been created, i.e. the area between
true demand and demand at cost

DWL =
∫ D(c,θ)

D(p∗,θ)

((
q

A

) 1
ε

− c
)
dq

If one can see beyond the algebra, the above make clear that the price level p∗ is the key component,
together with the left-digit bias that sets the distortions in demand (depending on ∆) and transfers
from consumers to producers.

p∗, the set price, does not depend on θ, the consumers left-digit bias, but on θ̂, the bias the
firm perceives to exist. Such that p∗ solves

p∗
(
θ̂, c, ε

)
= arg max

p

[(
1− θ̂

)
p+ θ̂ (bpc+ ∆)

]ε
(p− c)

As shown in the paper in equation 3, the price is shifted up in the interior solutions region and
down to a lower 99-ending price otherwise. Meaning that we know that the effect of the bias on
prices are mixed in sign

p∗ (θ, c, ε) ≶ p∗ (0, c, ε)

Further, if θ̂ < θ then: If p∗ (θ, c, ε) > p∗ (0, c, ε) ⇒ p∗ (θ, c, ε) > p∗
(
θ̂, c, ε

)
> p∗ (0, c, ε); and

if p∗ (θ, c, ε) < p∗ (0, c, ε) and is 99-ending, then p∗
(
θ̂, c, ε

)
≥ p∗ (θ, c, ε). Meaning, under bias

underestimation of firms, the effects on prices are also mixed in sign. Note that these effects are
not affected by ∆.

Together, these mean that the effects on CS and DWL are ambiguous in sign as they depend
on the underlying distribution of costs and elasticities.

G.2 Simulations and other demand structures

The mixed effects are not sensitive to the demand structure in a monopolistic setting. The reason
being that the same forces operate for any smooth demand with discontinuities – left-digit bias as
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modeled here, as a mix of the true price with a focal price ending, will shift demand reducing within-
digit sensitivity and creating sharp incentives to deviate to the lower 99-ending price. Profits, as
with constant elasticites, will be such that demand is affected by perceived prices but consumers
pay the actual price. Consumer Surplus is the area between “true” demand and the price, so the
shape of the demand curve will change above the price, but the effects of a higher price p∗ remain
a reduction in surplus, while a lower p∗ means a mix of benefits and costs to consumers. Similarly,
DWL is affected by whether or not the price is pushed down due to the bias.

Another question is whether this mixtures matter in practice or just in theory. While true
demand and cost structure are not observable, we can simulate different distributions of costs and
demand structures to at least see if the different components are indeed changing signs, and how.
Table 8 summarizes the signs of effects in the following exercise: I simulate 10,000 consumers with
individual valuation for a product drawn from a distribution F . A specific distribution determines
the local elasticity at each price point. Consumers have left-digit bias θ with focal price ending of
∆ and the firm has perceived left-digit bias of θ̂ ≤ θ. I then simulate a distribution of 500 costs
on a uniform distribution, solve for the price and surpluses at each set of parameters (θ, θ̂, c,∆). I
average across costs to obtain a number at each tuple

(
θ, θ̂,∆

)
.

One exercise is looking at the values at θ̂ = θ > 0 compared to a baseline of θ = θ̂ = 0 to see
the effects of higher left-digit bias when firms are sophisticated. The second exercise, is to compare
the values fixing θ and only changing θ̂ to 0 (meaning the firm prices as if there is no bias at all)
and to 0.005 (understimation of the bias, roughly as estimated in Section 5).
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Figure 10: Data comparison, price ending shares, and sample selection

(a) Retailer data
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Source: 1710 products, Retailer.

(b) Nielsen data
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The figures show the shares of 9-ending prices, 0-ending prices and others in the Retailer data (panel A) and
Nielsen data (panel B), and how these change by sample selection. The dark blue bars are the data before
cleaning (corresponding to column (2) in Table 1 and column (1) in 5). The middle green bars are the shares
of “real” prices in the data (columns (3) and (2)) defined as to-the-cent prices in the Retailer data and at
least 2 week price spells in Nielsen. The light yellow bars are the shares for “regular” prices (columns (4)
and (3)), defined as instances in which the net price equals the regular price in the Retailer data and price
spells of at least 6 weeks in Nielsen.
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Figure 11: Data description: “real” and “on-sale” by last digit of observed price
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Based on 1710 products, 52M observations. `on−sale` = weekly average price is lower than regular price.
`real price` = the weekly average price is `to the cent`. Shares of price endings: 9: 67%, 0: 13%, 5: 6%, others <2%.

       source: retailer data.

The figure shows the shares of observed prices that are to-the-cent (left) and on-sale (right), conditional on the last
digit of the (rounded to the cent) price. For example, on the left, prices ending with 9 are 98% to-the-cent while
2-ending prices are to-the-cent in 31% of observations. Meaning, for 69% of observed 2-ending rounded price, the
observation represents a mixture of several prices. On the right, an observation is on-sale if the actual price is lower
than the regular price. A 9-ending price is on-sale 9.9% of the time, while a 0-ending price is on-sale for 91% of these
observations.
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Figure 12: Shares of real prices and on-sale prices by length of price spell

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
● ● ● ● ●

● ●
●

0.0

0.2

0.4

0.6

0.8

1.0

1 6 11 16 21 26

spell length (weeks)

sh
ar

e

● to−the−cent on−sale cdf

Shares of observations that are to-the-cent prices and on-sale by spell-length for the retailer data (corre-
sponding to column (3) in Table 1). A product-week-store observation is allocated to spell length T if the
price on that week is identical across T consecutive weeks. The light yellow line is the CDF of observations
in the data. The dark circles are the share of observations, conditional on spell length, that are “real” (i.e.,
prices ending to-the-cent). The lighter triangles are the share of observations, conditional on spell length,
that are on-sale (i.e. net price is less than the regular price).
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Figure 13: Retailer Robustness: Residualized demand of 12 products and 70 retailers using Nielsen
data

(a) residualized demand, 2+ week spells
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(b) Residualized demand, 6+ week spells
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Net log-demand by price, residualizing product-level price elasticity, seasonality, store fixed effects, and promotion
effects. Regressions are conducted at the product-chain level (12 products, 11000 stores of 70 retailers, 468 weeks).
Different dollar digits are designated by color. Within-dollar linear fits, weighted by number of observations, are
added in solid lines. Fixed effects are estimated at 10-cent bins, and 95% confidence intervals are result of 300
cluster-bootstraps by store.
The top panel is using data on all observations of at least 2-week spells (Column (2) in Table 5). The bottom panel
presents the results from a restricted sample of at least 6-week spells (column (3) of Table 5). Data is truncated
for prices between $1 and $9.99 for clarity. For further details see Section 4.1 for the empirical specification and
Appendix D for data description.
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Figure 14: Demand structure robsutness: Residualized log-linear demand

(a) Main sample, constant semi-elasticity IV estimation
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(b) Restricted sample of regular prices, constant semi-elasticity OLS estimation
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Robustness: Alternative demand structure. Net log-demand by price, residualizing product-level price semi-elasticity,
cross-semi-elasticity, seasonality, store fixed effects, and promotion effects. Regressions are conducted at the product
level (1710 products, 248 stores, 177 weeks). Different dollar digits are designated by color. Within-dollar linear fits,
weighted by number of observations, are added in solid lines. Fixed effects are estimated at 10-cent bins, and 95%
confidence intervals are result of 200 cluster-bootstraps by store.
The top panel is using data on all to-the-cent prices from a national retailer data (Column (3) in Table 1), and the
regression is run with instrumental variables, as in Specification 6 but on prices rather than log-prices. i.e., logQ ~
p, instrumenting for the price with the price of the same item in other stores of the same distribution center in other
cities. The bottom panel presents the results of an OLS constructed on regular prices only (column (4) of Table 1).
Data is truncated for prices between $1 and $7.99 for clarity. For further details see Section 4.1.
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Figure 15: Demand structure robsutness: Residualized polynomial demand and rank fixed-effects

(a) Main sample, 5th degree polynomial, OLS estimation
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(b) Main sample, constant elasticity, within-category price decile fixed effects, OLS estimation
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Robustness: Alternative demand structure continued. Net log-demand by price. Top panel: residualizing product-
level 5th degree polynomial in prices, cross-elasticity, seasonality, store fixed effects, and promotion effects. Bottom
panel: residualizing product-level log-price, the decile of product price within the concurrent price distribution of items
from the same product category, cross-elasticity, seasonality, store fixed effects, and promotion effects. Regressions
are conducted at the product level (1710 products, 248 stores, 177 weeks). Different dollar digits are designated
by color. Within-dollar linear fits, weighted by number of observations, are added in solid lines. Fixed effects are
estimated at 10-cent bins, and 95% confidence intervals are result of 200 cluster-bootstraps by store.

68

 Electronic copy available at: https://ssrn.com/abstract=3413019 



Figure 16: Sample robustness: Residualized demand for an alternative sample of products
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Robustness: alternative sample. Net log-demand by price, residualizing product-level price elasticity, seasonality,
store fixed effects, and promotion effects. Regressions are conducted at the product level (2149 products). Different
dollar digits are designated by color. Within-dollar linear fits, weighted by number of observations, are added in solid
lines. Fixed effects are estimated at 10-cent bins, and 95% confidence intervals are result of 100 cluster-bootstraps by
store. Top panel shows the entire sample of to-the-cent prices, while the bottom restricts attention to regular prices
only.
The sample is of 2149 products of high availability but also highly concentrated prices (125 with more than 75% of
observations at 99-ending prices, the rest with more than 75% of observations sharing common dollar digit). Sample
consisted of 55.5 Million observations spanning the same stores and period of time as for the main sample. Data
cover $292 Million in annual revenues via sale of 170 Million units per year. Mean price of these products is $2.20
(1.27), with 21.7% of observations representing on-sale prices.
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Figure 17: CDF of left-digit bias estimates on Retailer data, three estimation methods.

0.00

0.25

0.50

0.75

1.00

−0.5 0.0 0.5 1.0 1.5

left−digit bias

cd
f

Estimation
method

from drops

NLS

semi elasticity

The figure shows the CDF of product-level left-digit bias estimates, corresponding to panel B of Table 2. The dark
solid line, “From drops”, is the CDF of left-digit bias estimates at the product level using the drops in demand at
dollar crossings coupled with elasticity of demand and the dollar digit. Dashed green, “NLS”, are estimates from
non-linear least squares. Light long dashed, “semi elasticity”, are the estimates from a log-linear regression with
constant semi-elasticity of demand. For details see Section 4.
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Figure 18: Bias Heterogeneity: Correlates of product and clientele characteristics with left-digt
bias

(a) Average product price
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(b) Per-trip purchased units
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(c) Household heads education level
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(d) Household annual income
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The figures show the correlation between product-level left-digit bias estimates and underlying characteristics of the
product and its clientele. Product-level estimates are averaged in 50 equally sized bins of the horizontal axis. In
each facet, the horizontal axis is the characteristic variable, and the vertical axis is the left-digit bias estimates (from
non-linear least squares estimates). Data on clientele characteristics are calculated from Nielsen home panel.
Panels (a)-(d) show the association with the product overall average price, the average number of units a purchasing
household purchase of that item in a single trip, the education level of purchasing household heads (maximum level if
two heads of household), and the annual income of purchasing households. For further details see Appendix Section
F.
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Figure 19: Simulation: Relative price level by bias
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The figure shows the the average price of products set by an optimizing firm by the level of left-digit bias, keeping
everything else fixed. The horizontal axis is the degree of left-digit bias, the vertical axis is the relative price to a
no-bias case, normalized to 1. Each curve represents a different price elasticity. For low elasticities, the average price
goes down with higher left-digit bias because the dominating force is to push prices down to 99-endings. For more
elastic demand, the price goes up, because the dominating force is on interior prices, or pushing to a higher 99-ending
price.
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Figure 20: Illustration: pricing schedule of a 2-product monopolist
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The figure gives an example of a pricing schedule of two products with and without cross elasticities of substitution
between the items. The same-price elasticity of each product is -2. Black curves are the prices of product i and
orange curves, which lie on top of another, are the prices of product j (the cost of product j is kept constant at 1.5).
Solid lines are the prices if there is no substitution between the products, and dashed when there is a cross-elasticity
of 0.1. The gray arrows point to the lowest prices of product i starting at 4 in the two different cases, showing that
the next-lowest price is higher for substitutes.
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Figure 21: Minimum distance estimation: empricial and predicted moments

The figure shows the empirical moments and predicted moments from a minimum distance estimation. Each moment
is share of prices in a 10-cent bin. The empirical moments are the shares of regular prices for the 1710 products,
shown in solid bars. Dark bars are the moments used for fitting, while the light bars are excluded from the fit and
used to create the counterfactual price distribution. The predicted moments are shown in semi-transparent light
green. For further details see Section 5.
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Figure 22: Estimated firm-perceived elasticity
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The figure shows the estimated perceived elasticity inferred from the price distribution. On the horizontal axis are
different assumptions about the estimation procedure. Namely, the range of prices used for estimation, the excluded
prices from the counterfactual price distribution fit, and the shape of that distribution via the polynomial degree.
Each point is the estimated perceived elasticity for each specification, and the confidence intervals are the 2.5% and
97.5% estimates from 300 cluster-bootstraps of the moments at the product level (that is why some point estimates
are outside of the confidence interval).
For all specifications, I can reject that the elasticity is larger than -1. While point estimates are sensitive to the exact
specification, bootstrapping the sample provide more similar confidence intervals.
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Table 5: Summary Statistics and Data Selection, Nielsen Data
Nielsen RMS

Full 2+ weeks 6+ weeks
(1) (2) (3)

Panel A: Data Description
Observations (M) 27.8 20.5 11.5
Products 12 12 12
Stores 11000 11000 11000
Weeks 468 468 468
Chains 70 70 70
Annual Revenue ($M) 97.9 57.2 28.4
Annual Units Sold (M) 20.9 11.5 5.67
First Date Jan-06 Jan-06 Jan-06
Last Date Dec-14 Dec-14 Dec-14

Panel B: Pricing Descriptives
Mean Price 5.51 5.55 5.32
Price SD 2.81 2.78 2.57
Share on-sale
Share 99-ending 0.30 0.35 0.34
Share 9-ending 0.70 0.81 0.86
Share 9-ending (non-sale)
Share 0-ending 0.10 0.09 0.04
Share 0-ending (non-sale)

The table presents summary statistics for the Nielsen data. Column (1) is the full sample as taken from DellaVigna
and Gentzkow, 2019. Column (2) is the main sample used, excluding what are likely non-real prices (i.e., keeping
only prices that are part of an at least 2-week spell). Column (3) provides further information on the characteristics
of longer price spells (at least 6 weeks).
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Table 8: Direction of welfare effects under various assumptions

∆ = 0 ∆ = 0.99
Value dist. effect of... CS DWL P Π CS DWL P Π
Beta θ > 0 ↔ θ = 0 - - + + - + + -
∼ 8 ∗ β(1, 3) θ̂ < θ ↔ θ̂ = θ + - - - + - - -

Exponential θ > 0 ↔ θ = 0 ? - ? + ? + ? -
∼ 1 + 3 ∗ exp(1) θ̂ < θ ↔ θ̂ = θ ? + ? - ? + ? -

Gamma θ > 0 ↔ θ = 0 - - + + + - - -
∼ Γ (8, 0.5) θ̂ < θ ↔ θ̂ = θ + + - - - + + -

Normal θ > 0 ↔ θ = 0 - + + + ? + + -
∼ N (4, 3) θ̂ < θ ↔ θ̂ = θ + - - - ? ? ? -

Pareto θ > 0 ↔ θ = 0 ? - ? + - + + -
∼ 5 ∗ Par(3)− 5 θ̂ < θ ↔ θ̂ = θ ? + ? - + ? - -

Uniform θ > 0 ↔ θ = 0 - + + + - + + -
∼ U [0, 6] θ̂ < θ ↔ θ̂ = θ + - - - + - - -

Each cell in the table describes the direction of an effect (as described on the second column) on one of the measures
(column title - Consumer Surplus, Dead Weight Loss, Price, Profits), given ∆ (top row) and value distribution (left-
most column), averaged across a cost distribution as in Section 6. “+” symbolizes higher, “-” lower, and “?” means
that the effect changes signs for different values of θ. For example, the “-” in the bottom right cell means that when
firms underestimate the bias (θ̂ < θ), consumers valuation of the item is distributed uniformly between 0 and 6, and
consumers’ focal price ending is 99, then DWL is lower than if firms were to perceive the bias correctly (θ̂ = θ).
Across rows, and regardless of ∆, lost profits from underestimation are in the range of 1%-2%.
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